Advertisement

基于子带分解的多尺度Retinex红外图像自适应细节增强方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种创新的红外图像处理技术,采用子带分解和多尺度Retinex算法,实现对不同频段信息的有效提取与优化,进而提升图像细节表现力。该方法具备良好的自适应能力,能显著改善低对比度下的视觉效果。 为了实现高动态范围红外图像的压缩以及增强其明亮区与阴影区细节的效果,我们提出了一种基于子带分解多尺度Retinex自适应细节增强的方法。该方法首先通过子带分解多尺度Retinex技术获取三个独立光谱子带;然后利用引导滤波将每个子带划分为细节层和基础层;接着根据各子带的特性设计了用于细节增强的权值基函数,从而实现红外图像中特定区域自适应地进行细节增强。针对处理后图像中的平滑区灰度不均匀问题,我们采用自适应方式求解Gamma曲线以优化灰度映射效果。实验结果显示:通过本段落提出的方法,可以显著提升红外图像在阴影和高亮部分的细节表现,并且全局视觉质量得到了改善。客观评估结果也表明该方法能够有效增强图像中的细节信息;同时与传统的基于双边滤波器进行细节增强的技术相比,本研究提出的算法并未增加额外的时间消耗。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Retinex
    优质
    本研究提出了一种创新的红外图像处理技术,采用子带分解和多尺度Retinex算法,实现对不同频段信息的有效提取与优化,进而提升图像细节表现力。该方法具备良好的自适应能力,能显著改善低对比度下的视觉效果。 为了实现高动态范围红外图像的压缩以及增强其明亮区与阴影区细节的效果,我们提出了一种基于子带分解多尺度Retinex自适应细节增强的方法。该方法首先通过子带分解多尺度Retinex技术获取三个独立光谱子带;然后利用引导滤波将每个子带划分为细节层和基础层;接着根据各子带的特性设计了用于细节增强的权值基函数,从而实现红外图像中特定区域自适应地进行细节增强。针对处理后图像中的平滑区灰度不均匀问题,我们采用自适应方式求解Gamma曲线以优化灰度映射效果。实验结果显示:通过本段落提出的方法,可以显著提升红外图像在阴影和高亮部分的细节表现,并且全局视觉质量得到了改善。客观评估结果也表明该方法能够有效增强图像中的细节信息;同时与传统的基于双边滤波器进行细节增强的技术相比,本研究提出的算法并未增加额外的时间消耗。
  • Retinex.pdf
    优质
    本文提出了一种基于多尺度Retinex的自适应图像增强方法,能够有效提升图像的质量和视觉效果,在多种照明条件下保持细节清晰度。 基于多尺度Retinex的自适应图像增强方法旨在提升图像质量,在处理不同光照条件下的图像时表现尤为突出。该研究通过分析多种场景中的应用效果,证明了其在细节恢复与色彩校正方面的有效性,并为后续相关领域的研究提供了有价值的参考。
  • RetinexMATLAB
    优质
    《多尺度Retinex:基于MATLAB的图像增强方法》一书介绍了一种先进的图像处理技术——多尺度Retinex算法,并通过MATLAB语言详细讲解了该算法的具体实现和应用,是从事计算机视觉与图像处理领域研究者的重要参考。 Petro, AB, Sbert, C., 和 Morel, JM (2014) 的图像增强多尺度 Retinex 算法有两种不同的实现方式。第一种方法使用 scalefactor 的指数缩小直到 scalefactor^nscale,这可以加速处理大图像的算法,但会产生更多的光晕伪影。第二种方法接受不同尺度作为输入,因此允许非约束缩放。 以下是生成缩影的具体步骤: ```matlab im = imread(example.jpg); % 使用最大通道作为图像照明的近似值 L = max(im, [], 3); ret = MSRetinex(mat2gray(L), 5, 3, 2, [5 5], 8); ret2 = MSRetinex2(mat2gray(L), [5, 35, 150], [5 5], 8); ```
  • 改进阶梯效并提升Retinex
    优质
    本研究提出了一种改进的变分Retinix算法,旨在减少阶梯效应,并通过优化细节处理来显著提高红外图像的质量和清晰度。 本段落提出了一种新的变分Retinex算法用于消除阶梯效应并增强红外图像的细节。该方法在构建模型时引入了高斯曲率正则项,并通过一阶微分添加细节增强约束,从而实现对细节信息的自适应强化。此外,结合邻域差分和曲率滤波技术来求解变分模型的最佳解。实验结果显示,在定量评价指标上,本算法优于其他现有的变分Retinex方法处理后的图像效果,并且能够有效消除阶梯效应、增强图像细节及改善视觉体验。
  • Retinex技术
    优质
    本研究探讨了基于多尺度Retinex算法的图像增强方法,通过优化色彩校正和对比度提升,有效改善图像质量。 在MSR算法的增强过程中,分别对图像的红、绿、蓝通道进行计算,并通过加权求和的方式得到最终结果。然而,在这一过程中,可能会引入噪声,导致局部区域色彩失真,影响物体的真实颜色表现及整体视觉效果。为解决这个问题,通常会采用带有色彩恢复因子C的多尺度算法来改善图像质量。
  • HDR 大师 -
    优质
    红外图像增强是一款专为提升HDR红外图像质量设计的专业软件。它能够显著优化和增强图像细节,适用于科研、安防及工业检测等多种领域。 在IT领域特别是计算机视觉与图像处理方面,红外图像的处理是一项关键的技术。本段落将深入探讨“HDR-infrared-images-detail-enhancement-master_infraredimage_红外增强”这一主题,它涉及如何利用高动态范围(HDR)技术和红外成像来提升图像细节和识别效果。 红外图像是通过捕捉物体发出或反射的非可见光波段得到的一种特殊影像。这些图像在安全监控、医疗诊断、环境监测及军事应用等领域有着广泛应用。然而,由于红外光线的特点,原始的红外图像往往存在对比度低且细节模糊的问题,这给后续处理和识别带来了挑战。 “HDR-infrared-images-detail-enhancement-master”项目旨在解决这些问题,并通过高动态范围技术来提升红外图像的质量。通常情况下,HDR技术用于结合多张曝光不同的照片以获得更宽广的亮度区间,揭示更多暗部与亮部细节的信息。在红外成像中应用此项技术可以有效改善对比度和清晰度。 该项目可能包括以下步骤: 1. **数据采集**:使用不同曝光设置下的红外相机来获取一系列图像。 2. **图像融合**:采用HDR算法将这些多张图片合成一张宽动态范围的高质量影像。常见的方法有Debevec、Mertens及Reinhard等。 3. **细节增强与降噪处理**:在进行局部对比度提升或自适应直方图均衡化之前,需要先通过双边滤波或其他去噪技术减少图像中的噪声干扰。 4. **目标识别**:经过上述步骤优化后的红外影像能够更好地支持特征提取和对象检测任务。可以利用机器学习模型如卷积神经网络(CNN)来进行自动化的目标识别。 5. **评估与改进**:通过信噪比、对比度及识别率等指标对处理效果进行量化评价,并据此调整参数以进一步提升图像质量和目标识别的准确性。 在实际应用中,这项技术不仅改善了红外影像的表现力,也为自动分析和智能决策提供了更可靠的依据。随着硬件设备与算法的进步,“HDR-infrared-images-detail-enhancement-master”项目所涵盖的技术将在未来得到更加广泛的应用,并为各行业创造更多价值。
  • MATLAB代码
    优质
    本代码利用MATLAB实现了一种新颖的图像处理技术,能够有效提升图像在不同尺度下的细节表现,适用于多种应用场景。 图像多尺度细节提升算法的MATLAB代码可以用来增强不同尺度下的图像细节质量。这种算法通常包括一系列处理步骤,如小波变换、特征提取以及基于学习的方法等,以提高图像在各个层次上的清晰度与视觉效果。编写此类代码时需要注意的是要确保其适用于各种类型的输入数据,并且能够有效地利用计算资源来优化性能。
  • Retinex非线性
    优质
    本研究提出了一种基于单尺度Retinex的非线性图像增强技术,旨在改善图像对比度和细节表现,适用于多种低质量图像处理场景。 本段落档探讨了基于单尺度Retinex算法的非线性图像增强方法。该研究提出了一种改进的图像处理技术,旨在通过调整图像中的亮度和对比度来提升视觉效果。这种方法在改善低光照条件下或色彩不均衡的照片时特别有效。文档详细介绍了算法的工作原理及其应用实例,并分析了其相对于传统Retinex算法的优势与局限性。
  • DDE.zip_DDE_与层次_
    优质
    本项目提供了一种基于DDE(深度递归细化增强)技术的算法,专门用于提升红外图像的细节和对比度,显著改善了成像质量。 红外图像细节增强仿真采用双边滤波器进行图像分层,并使用测试源数据进行验证。
  • Contourlet变换及Retinex水下
    优质
    本研究提出了一种结合Contourlet变换与多尺度Retinex技术的创新算法,有效提升水下图像的清晰度和色彩还原度,克服了传统方法在处理复杂背景和光照条件下的局限性。 针对水下图像对比度低、边缘模糊及噪声大的特点,本段落提出了一种基于非下采样Contourlet变换与多尺度Retinex的增强算法。该方法首先对水下图像进行多尺度多方向的非下采样Contourlet变换;然后通过多尺度Retinex技术调整低频系数以提高整体对比度;接着,在各个带通子带上估计噪声,并抑制模值低于阈值的系数,同时改进神经网络中的Sigmoid函数来调节高于该阈值的系数。最后,经过非下采样Contourlet逆变换得到增强后的图像。 与传统方法相比,此算法能够有效降低水下图像中的背景噪声、提升对比度以及突出目标轮廓,并且获得了更高的对比度评估分数。