Advertisement

超声导波激励信号源设计方法的研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究致力于探索并优化超声导波激励信号源的设计方法,旨在提升长距离管道检测与评估技术的精确性和效率。通过理论分析和实验验证相结合的方式,我们深入探讨了不同信号特征对导波传播性能的影响,并提出了一种新型高效信号生成策略,为实际应用中的结构健康监测提供了新的视角和技术支持。 本段落介绍了一种用于激励超声导波的信号源设计方法,旨在解决管道检测技术中的多模态与频散特性问题。通过对L(0,2)模态的研究发现,在特定频率范围内其传播速度几乎保持恒定且最快,因此采用窄带脉冲作为激励信号可以有效激发此模式的超声导波,并减少频散现象的影响。 设计中采用了高速单片机DS89C430和数模转换器AD9708来实现高精度的信号发生功能。同时构建了差动放大电路与滤波电路,确保输出电压具有正负极性和平滑性。此外,在软件层面考虑了硬件资源需求,并实现了按键扫描及波形数据点的输出等关键功能。 实验结果显示所设计的激励信号源能够产生符合预期要求的窄带脉冲信号:最高幅值约为1.5 V,单音频频率为100 kHz且经过汉宁窗调制包含十个周期。该方法具有广泛的应用前景,在提高管道缺陷检测精度和速度方面表现出显著效果。 主要涉及的知识点包括: - 超声导波技术的长距离与快速检测优势; - L(0,2)模态在特定频段内传播特性稳定且速度快的特点; - 通过窄带脉冲激励信号源激发L(0,2)模式超声导波的方法设计; - 高速单片机DS89C430与数模转换器AD9708的性能特点,如快速指令执行和高更新率等。 - 差动放大及滤波电路的设计原理和技术参数。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究致力于探索并优化超声导波激励信号源的设计方法,旨在提升长距离管道检测与评估技术的精确性和效率。通过理论分析和实验验证相结合的方式,我们深入探讨了不同信号特征对导波传播性能的影响,并提出了一种新型高效信号生成策略,为实际应用中的结构健康监测提供了新的视角和技术支持。 本段落介绍了一种用于激励超声导波的信号源设计方法,旨在解决管道检测技术中的多模态与频散特性问题。通过对L(0,2)模态的研究发现,在特定频率范围内其传播速度几乎保持恒定且最快,因此采用窄带脉冲作为激励信号可以有效激发此模式的超声导波,并减少频散现象的影响。 设计中采用了高速单片机DS89C430和数模转换器AD9708来实现高精度的信号发生功能。同时构建了差动放大电路与滤波电路,确保输出电压具有正负极性和平滑性。此外,在软件层面考虑了硬件资源需求,并实现了按键扫描及波形数据点的输出等关键功能。 实验结果显示所设计的激励信号源能够产生符合预期要求的窄带脉冲信号:最高幅值约为1.5 V,单音频频率为100 kHz且经过汉宁窗调制包含十个周期。该方法具有广泛的应用前景,在提高管道缺陷检测精度和速度方面表现出显著效果。 主要涉及的知识点包括: - 超声导波技术的长距离与快速检测优势; - L(0,2)模态在特定频段内传播特性稳定且速度快的特点; - 通过窄带脉冲激励信号源激发L(0,2)模式超声导波的方法设计; - 高速单片机DS89C430与数模转换器AD9708的性能特点,如快速指令执行和高更新率等。 - 差动放大及滤波电路的设计原理和技术参数。
  • 1MHz电路
    优质
    本项目旨在设计一款基于1MHz频率的超声波激励电路,适用于工业检测、医疗成像等领域。通过优化电路参数以提高信号质量和稳定性。 多普勒明渠流量计通常使用1MHz的换能器,并且需要较高的电压来激发换能器。设计电路可以提供高达200伏峰峰值的电压。仅供参考,欢迎提出意见相互学习。
  • COMSOL中利用点管道(钢Q235材质,外径200mm,壁厚10mm,频率50kHz)
    优质
    本研究在COMSOL软件中通过点源激励方法,探讨了针对特定规格(Q235钢制,直径200mm,厚度10mm)管道中的超声波导波传播特性,在50kHz的激发频率下进行了深入分析。 利用点源激励超声波,在管道上每隔15度放置一个激励源。管材质为钢Q235,外径200mm,壁厚10mm,激励频率为50kHz,并产生L(0,1)和L(0,2)模态。 在每个声源位置处进行自发自收,在弯管处设置裂纹缺陷。当声波遇到裂纹后会返回,接收到的波形如图3所示。
  • COMSOL电磁检测技术:静磁及涡流响应
    优质
    本研究聚焦于利用COMSOL软件探讨电磁超声导波检测技术中静磁激励与涡流响应机制,深入分析其在无损检测中的应用潜力。 在电磁超声导波检测技术中,使用磁铁激励静磁场,并通过线圈产生的感应涡流来激发1mm厚铝板中的250kHz的兰姆波(Lamb wave)。在距离起始点200毫米的位置设置了一个深度为0.8毫米的裂纹缺陷。位于铝板表面80毫米处的探针接收到了一系列信号,依次是初始脉冲、由裂纹反射产生的S0模态和A0模态波形以及端面反射的S0模态波形。
  • 端口CST
    优质
    波导端口的CST激励源一文专注于讲解在高频结构仿真软件(HFSS)中如何设置和使用CST端口技术进行波导系统的建模仿真,为电磁学研究提供高效解决方案。 波导端口是一种特殊的解算域边界条件,能够促进能量的吸收。这一过程通过二维频域求解器来实现,在该过程中计算出二端面内的可能本征模,并且在每个端口处的电磁场解析解可以通过大量模式叠加得到。然而实际上,只需少量模式就能进行有效的场仿真。所需考虑的模式数量可以在“波导端口”对话框中设定。
  • CST中
    优质
    本文将详细介绍在CST软件中如何有效设置各种类型的激励源,包括快速入门指南和实用技巧,帮助用户掌握电磁仿真中的关键步骤。 CST软件中的激励源种类繁多,主要包括对波导端口和离散端口的讲解与应用。
  • 基于AFSA压缩感知重构
    优质
    本研究探索了基于原子函数小波变换(AFSA)的超声信号压缩感知技术,提出了一种高效的信号重构算法,显著提高了数据处理效率与图像质量。 本段落介绍了基于AFSA的超声信号处理中的MP重构方法,并详细讲解了MATLAB程序中的MP算法以及人工鱼群算法的应用。
  • COMSOL 5.6仿真:板状材料中数值模拟
    优质
    本研究利用COMSOL 5.6软件进行数值模拟,探讨在板状材料中通过激光激发产生的超声波传播特性,深入分析激光与材料相互作用机制。 COMSOL 5.6版激光超声仿真:板材激光激发超声波数值模拟技术解析 COMSOL Multiphysics 是一种强大的仿真和建模软件,用于多物理场的耦合分析。最新版本 COMSOL 5.6 引入了新的功能,其中包括对激光超声的研究。这种方法利用激光产生的超声波来检测材料,并特别适用于板状材料的无损检测。 通过数值模拟功能,COMSOL 5.6 允许研究者深入探索激光如何在板状材料中激发超声波并观察其传播、反射和衍射等现象。进行此类仿真时需要考虑多个物理过程,如激光脉冲与材料相互作用、热弹性效应以及超声波的传播等。这些过程可以通过 COMSOL 5.6 中多物理场耦合模块实现。 板状材料中激光激发超声波的数值模拟研究对于理解并预测其在不同条件下的行为至关重要,有助于改进检测技术,并提高准确性和效率。然而,由于新功能的引入,旧版本软件无法打开或运行 COMSOL 5.6 创建的模型文件,因此建议用户升级至最新版。 本压缩包中的相关文档和图像提供了详细的理论与实践内容,帮助研究人员和技术人员获得深入的技术分析及指导。合理的数据结构能够提高仿真效率并确保数值模拟准确性。 总之,COMSOL 5.6 在激光超声仿真的应用为材料检测领域带来了新的研究方向和发展空间,并有助于更好地理解板状材料中超声波的传播机制。