Advertisement

安捷伦发布新型功率表及升级功率传感器

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
安捷伦科技公司近日推出了全新的功率表和升级版功率传感器,为射频和微波领域提供了更精确、高效的测量解决方案。 安捷伦科技(Agilent Technologies)日前宣布推出两款新的功率表以及七款Agilent N8480系列的新功率传感器。相比旧型号,这些新产品在提供更高准确度的同时,保持了类似的价格,并且功能更加强大。 新推出的Agilent N1913A和Agilent N1914A EPM系列功率表具备多样化功能与易用性,在性能上超越了之前的Agilent E4418B/EPM系列。这两款产品提供单信道、双信道或四信道选择,支持平均功率及脉冲功率测量。其频率范围覆盖从9kHz到110GHz的广泛区间,并且单一传感器的动态范围可达到50dB至90dB之间。此外,量测速度也显著提升到了每秒400次。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    安捷伦科技公司近日推出了全新的功率表和升级版功率传感器,为射频和微波领域提供了更精确、高效的测量解决方案。 安捷伦科技(Agilent Technologies)日前宣布推出两款新的功率表以及七款Agilent N8480系列的新功率传感器。相比旧型号,这些新产品在提供更高准确度的同时,保持了类似的价格,并且功能更加强大。 新推出的Agilent N1913A和Agilent N1914A EPM系列功率表具备多样化功能与易用性,在性能上超越了之前的Agilent E4418B/EPM系列。这两款产品提供单信道、双信道或四信道选择,支持平均功率及脉冲功率测量。其频率范围覆盖从9kHz到110GHz的广泛区间,并且单一传感器的动态范围可达到50dB至90dB之间。此外,量测速度也显著提升到了每秒400次。
  • DSOX1102G包-开启更多能.zip
    优质
    本资源为安捷伦DSOX1102G型号示波器提供软件升级包,帮助用户解锁更多高级功能和性能优化,适用于需要增强设备操作体验的技术人员。 网上下载的升级工具有一定风险,请玩家自行研究使用。如果成功会很开心。我已经用它升过几次级了,过程都很顺利且快速。不过需要注意的是,将升级文件放在U盘上可能会导致一些问题或需要特别注意的地方。建议在安全环境下进行操作,并确保备份重要数据。
  • 官方ADS射频放大设计流程
    优质
    本教程由安捷伦科技官方提供,详细介绍了使用ADS软件进行射频功率放大器设计的专业流程和技巧,适合电子工程师参考学习。 文档内容包含了安捷伦官方设计射频功率放大器的完整步骤。
  • 耗心SON7015
    优质
    简介:SON7015是一款专为健康监测设计的低功耗心率传感器,采用先进的生物传感技术,具备高灵敏度和精准度,适用于各种穿戴设备。 ### 低功耗心率传感器SON7015的关键知识点 #### 一、产品概述 - **名称**:SON7015是一款由松恩电子有限公司生产的低功耗心率传感器。 - **功能**:该传感器通过光电式容积描记(PPG)技术检测人体心跳信号,并提取出心率波形数据。 - **优势**:继承了前代产品SON1303的优点,进一步优化了功耗和灵敏度。 #### 二、产品特性 1. **高集成度**:集成了双LED、高灵敏度光感IC及低噪声前置放大器于一体。 2. **超低功耗**:工作时的电流消耗低于0.5mA,适合应用于电池供电的设备。 3. **小巧轻便**:尺寸仅为4x2x1.05毫米,便于集成到小型可穿戴设备中。 4. **独立电源**:支持独立供电模式,增强了产品的灵活性。 5. **高灵敏度**:采用高灵敏度光感IC,提高了检测精度。 6. **双绿光LED**:两个绿色LED的波长均为550nm,能有效穿透皮肤组织。 7. **接收端**:同样使用了550nm波长的纳米涂层来增强信号接收能力。 8. **无需晶体振荡器**:产品设计中不需要外部晶体振荡器,简化了外围电路的设计。 9. **宽工作电压范围**:支持2.3V至6V的工作电压,适应性更强。 10. **均值电压**:默认均值电压为3V,并可根据客户需求进行调整。 #### 三、应用场景 - **智能手表手环**:监测用户的实时心率以实现健康管理功能。 - **智能手机**:集成在手机中作为健康监测的一部分。 - **医疗器械**:用于专业医疗设备,如心电监护仪等。 - **无线耳机**:在用户运动时提供心率变化的数据支持,提升用户体验。 - **其他可穿戴设备**:例如智能眼镜、智能服装等。 #### 四、硬件规格与电气特性 1. **电路系统结构**:内部包含LED发射模块、光感接收模块和前置放大电路。 2. **输出电压**:Vout的值根据负载电阻RL和输出电流Io来确定。 3. **Pin脚定义**: - LED+:LED正极; - LED-:LED负极; - VCC:电源正极; - GND:地线端口; - VOUT:输出电压端口。 4. **最大绝对额定值**: - LED正向电流限制为0.2mA - 反转电压不超过4V - 输入电压范围从-0.7V到7V - 输出电压< VCC;输出电流5μA; - 温度工作范围:保存温度范围是-40°C至100°C,工作温度为-30°C至85°C。 - 回流焊最高温限制260°C(持续时间不超过10秒); - 静电放电防护能力>8kV。 5. **光电特性**:在VCC=3V和Ta=25°C条件下: - 正向电压为2.3V - 反向电流<100μA - 发射波长是550nm,接收波长同样为550nm。 - 典型工作时的电流消耗范围在3.5μA至6.5μA之间; - 饱和输出电压2.2V到2.35V - 温度协同系数-0.2%℃。 #### 五、封装与尺寸 - 封装尺寸:4x2x1.05毫米。 - 包装规格:每包1000片。 SON7015是一款性能优异的低功耗心率传感器,不仅具有出色的灵敏度和低功耗特性,并且体积小巧,非常适合集成到各种可穿戴设备和其他小型电子设备中。此外,其广泛的应用场景使其成为现代健康管理领域的重要组成部分。
  • 利用ADS实现放大的精准设计
    优质
    本文章介绍了如何使用安捷伦ADS软件进行功率放大器的设计与优化,通过实例分享了精确建模、仿真分析和调试技巧。 ADS助力功率放大器A的设计与优化。
  • 纯电电路的有与无
    优质
    本段落探讨了纯电感电路中功率的概念及其特性,重点分析了有功功率和无功功率的区别、意义以及它们在交流电路中的作用。 在电力系统中,有功功率(P)与无功功率(Q)是两个至关重要的概念,它们直接影响电路的运行效率及稳定性。 **1. 有功功率:** 有功功率是指实际消耗并转换为其他形式能量如机械能、光能或热能的电功率。它是维持用电设备正常运转的关键因素。若设备获得的有功功率过低,则可能引发线损增加,系统容量下降以及设备使用效率降低等问题,从而导致能源浪费。 例如,在电动机中需要足够的有功功率来驱动其旋转运动;如果提供的有功功率不足,电机将无法达到预定的工作速度或性能水平。因此,确保适当的有功功率是保证电气设备高效运行的基础条件之一。 **2. 无功功率:** 相对抽象的无功功率主要涉及电场与磁场之间的能量交换过程,在电网中的感性负载(如电动机、扼流圈及变压器等)中尤为显著。由于这些元件存在电感,当电压发生变化时会产生电流滞后现象,并导致电压和电流之间出现相位差。 这种情况下形成的负功率会反馈到电力网络之中;而在电流与电压重新达到相同相位的时候,则需要消耗同样数量的无功功率来建立磁场。因此可以说,凡是有电磁线圈参与工作的电气设备都需要一定量的无功功率以维持其正常工作状态。 然而过高的无功需求会导致如下问题: 1. 使得电路中的电流增大并增加视在功率; 2. 总电流上升导致额外损耗; 3. 线路压降变大,进而影响电网电压稳定性。 **纯电感电路:** 当交流电源通过线圈时,在此过程中会产生自感电动势对流动的电流形成阻碍作用。在这种条件下,电压相对于电流领先90度(即π/2)。在这样的情况下,瞬时功率会随着时间和相位的变化而变化,并且呈现出一种“波动”的模式。 尽管这种瞬时功率会在正负值之间交替出现,在一个完整的周期内平均而言其总和为零。也就是说在一个完整的工作循环中纯电感电路并没有实际消耗任何能量,只是与电源间进行着能量交换。 无功功率QL表示了线圈与其外部电源之间的最大瞬时功率量度,并且是衡量两者之间能量交换规模的指标之一。计算公式可表达为 QL = UL * IL * XL ,其中UL代表电感两端电压的有效值,IL则指流经该元件电流的有效值,而XL则是描述线圈自身特性(即自感)的阻抗参数。 总之,有功功率和无功功率是理解电力系统运行原理的重要基础。前者关乎设备的实际工作效果;后者涉及能量储存与交换过程中的技术细节。在设计及优化电网时合理调控这两种类型电能的比例至关重要,以确保整个系统的高效稳定运作。
  • 53131A频计使用手册
    优质
    《安捷伦53131A频率计使用手册》是一份详尽的操作指南,提供了关于如何设置、校准和使用Agilent 53131A频率计的全面信息。 安捷伦53131A频率计说明书的英文版提供了详细的使用指南和技术参数。
  • 分配合成
    优质
    功率分配器和功率合成器是射频微波系统中的关键组件,用于信号的等比例分配或合并。这些器件在雷达、通信和电子战等领域发挥着重要作用。 ### 功率分配器与功率合成器:理解其原理与应用 #### 引言 在电子工程领域,尤其是在射频(RF)与微波技术中,功率分配器和功率合成器是不可或缺的关键组件。它们在无线通信、雷达系统、卫星通信以及测试与测量设备中扮演着核心角色。本段落旨在深入探讨功率分配器与功率合成器的基本概念、工作原理及应用,为设计者提供必要的基础知识,帮助理解这些设备的功能,并定义关键性能参数。 #### 功率分配器的原理与应用 功率分配器是一种理想上无损耗的双向设备,它能够将一个输入信号均匀地分割成两个或多个等相位输出信号。这种能力使其不仅作为分配器存在,还能执行向量求和功能,因此有时也被称作功率合成器或加法器。功率分配器有两种主要构造形式:通过级联两路分配器实现的结构,在射频频率单元中通常使用180°混合器;而在微波频率设备中,则采用Wilkinson或渐变线设计。 N路分配器是一种将信号以非2的幂次方式分割的设备。这些设备集成了专有电路设计和专利技术,满足不同应用场景的需求。 #### 功能描述:二进制功率分配器 - 射频频段 在射频频率下,二进制功率分配器内部使用180°混合器实现。图1展示了一个180°混合器的标准示意图,其中端口A设有终端负载。物理上,两路功率分配器看起来像一个三端子设备,因为Z0终端通常安装在封装内部。虽然传统的180°混合器可以用作功率分配器,但通常形式的两路功率分配器在其四个端口中没有Z0阻抗级别。更高阶的二进制功率分配器,如4路和8路分配器,是通过级联不同配置的两路功率分配器来实现的。图2展示了4路分配器的功能框图,而8路分配器则会在额外的两路分配器的“B”端口重复这一过程。 #### 功率合成器的作用 功率合成器则是将多个输入信号合并成一个输出信号的设备。在许多情况下,尤其是在需要高功率输出的应用中,功率合成器通过组合多个较低功率放大器的输出来达到这一目的。这种技术对于提高效率和可靠性至关重要,因为它允许在不增加单个放大器复杂性和成本的情况下实现更高的总输出功率。 #### 性能参数与权衡 选择和设计功率分配器或合成器时,有几个关键性能参数需要考虑: 1. **插入损耗**:信号通过设备时的能量损失,通常以分贝(dB)表示。 2. **隔离度**:衡量各输出端口之间的相互影响程度。良好的隔离度可以减少串扰。 3. **幅度平衡**:确保所有输出端口的信号幅度一致。 4. **相位平衡**:保持所有输出信号间的相位差一致,这对于需要精确相位控制的应用至关重要。 5. **功率容量**:设备能处理的最大功率水平。超出此限制可能导致设备损坏。 6. **带宽**:设备的工作频率范围,应覆盖所需应用的频率需求。 7. **驻波比(VSWR)**:反映设备与传输线匹配的程度。低VSWR意味着更少的反射和更高的能量传输效率。 #### 结论 功率分配器和功率合成器是现代电子系统中不可或缺的部分,在信号处理、功率管理以及高性能通信系统中发挥着重要作用。了解这些设备的工作原理及关键性能指标对于设计高效且可靠的电子系统至关重要。随着技术不断进步,功率分配器与合成器的设计也在不断创新以满足日益增长的带宽需求和功率密度要求。
  • 与无
    优质
    《功功率与无功功率》一文深入探讨了电力系统中两种重要类型的电能传输和消耗。文中详细解析了功功率在实际工作中的能量转换效率及其应用;同时,还阐述了无功功率对电网稳定性和设备性能的影响,并介绍了两者之间的关系及优化策略。 本段落探讨了有功功率的分析及其对频率的影响,并研究了无功功率与电压之间的关系以及无功功率本身的重要性。