Advertisement

手机锂电池放电电量测量的DIY制作(含原理图、PCB及程序源码)-电路方案

  • 5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目提供了一种自制手机锂电池放电电量测量装置的方法,包括详细的原理图、PCB设计和程序源代码,旨在帮助电子爱好者深入理解电池管理和监测技术。 该设计主要用于粗略测量手机锂电池的放电电量。此电路还需外接USB-TTL模块及万能充电器将电池电源引出。利用STC自带比较器控制MOS管实现恒流,取样电阻为0.1欧姆(建议改为0.5欧姆),由于比较器误差约为1.5mV,实际电流会略有偏差。程序中每秒采样一次Vcc和Vbat的值,并根据这些数据计算PWM值、推算出实际设置电流值并累加得到电量信息,然后通过串口将当前的电压及电量等信息发送至电脑的串口调试助手。当电池电压降至指定阈值时,蜂鸣器会发出声音。 电路中的关键部分包括:PWM0用于设定电流;ADC4采集VBAT/3;P1.0为蜂鸣器正极;P3.7为蜂鸣器负极。在电路修改方面,建议将ADC4对地连接一个0.1uf电容,并且C2改为0.1uf。 需要注意的是:此电路没有防反接功能,在接入电池时需注意正负极性,否则可能会烧毁MOS管。测量结果仅供参考。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DIYPCB)-
    优质
    本项目提供了一种自制手机锂电池放电电量测量装置的方法,包括详细的原理图、PCB设计和程序源代码,旨在帮助电子爱好者深入理解电池管理和监测技术。 该设计主要用于粗略测量手机锂电池的放电电量。此电路还需外接USB-TTL模块及万能充电器将电池电源引出。利用STC自带比较器控制MOS管实现恒流,取样电阻为0.1欧姆(建议改为0.5欧姆),由于比较器误差约为1.5mV,实际电流会略有偏差。程序中每秒采样一次Vcc和Vbat的值,并根据这些数据计算PWM值、推算出实际设置电流值并累加得到电量信息,然后通过串口将当前的电压及电量等信息发送至电脑的串口调试助手。当电池电压降至指定阈值时,蜂鸣器会发出声音。 电路中的关键部分包括:PWM0用于设定电流;ADC4采集VBAT/3;P1.0为蜂鸣器正极;P3.7为蜂鸣器负极。在电路修改方面,建议将ADC4对地连接一个0.1uf电容,并且C2改为0.1uf。 需要注意的是:此电路没有防反接功能,在接入电池时需注意正负极性,否则可能会烧毁MOS管。测量结果仅供参考。
  • 系统设计设计报告)
    优质
    本项目详细介绍了锂电池容量测量系统的电路设计,包括系统工作原理、硬件电路图以及软件编程代码,并附有完整的设计报告。 锂电池容量测量设计原理是通过可控的恒流放电来实现的。在这一过程中,系统会显示电池电压、放电电流以及已放出的容量。为了达到恒定电流的效果,PWM信号经过三级DA滤波处理后生成可变且稳定的电压输出,从而控制恒流放电过程中的电流大小。 当进行放电操作时,指示灯将以每0.5秒一次的速度闪烁以示提醒。系统通过状态ADC获取电池的实时电压数据,在达到预设终止电压值之后会自动停止放电,并使指示灯保持常亮状态,避免过度放电对电池造成损害。 此外,还有一个补充说明涉及到了连接上位机的操作方法(具体视频演示内容未在此文本中提供)。同时附上了实物作品图的截图供参考。
  • 系统DIY设计(PCB、BOM部分)-
    优质
    本项目详细介绍了电池管理系统的设计流程,包括工作原理解析、电路图绘制、PCB布局与布线技巧,并提供物料清单和部分代码,适合电子爱好者深入学习。 该设计基于ADI公司的AD7280A芯片完成。下面分享一些电池管理系统的设计心得。 AD7280A的主要特性包括: - 12位精度的ADC转换器,可在48节电池中仅需7微秒内完成转换。 - AD7280A采用直接从电池供电的方式,并支持宽范围输入电压(8至30V),其理论精度为正负1.6毫伏,在广泛的温度范围内也能保持高性能,适用于汽车级应用需求。 - 芯片集成了6个用于测量的电压通道和同样数量的温度采集通道,这在同类产品中具有优势。 然而,在实际使用过程中也遇到了一些挑战。例如SPI通信方式方面,这款芯片在一个时钟周期内要求完成数据接收与发送任务,而大多数单片机并不具备这种功能或需要额外编程实现模拟该模式下的操作。本次实验采用的是PIC16F876A单片机,由于其缺少匹配的SPI接口支持,最终只能通过软件方式来模仿SPI通信机制,这在一定程度上削弱了AD7280A的数据传输速度优势。 电池管理系统设计概述: - 从宏观角度来看,在电动汽车和混合动力汽车中必须安装电池管理系统以确保对电池进行检测、维护正常充放电状态以及防止过充电或过度放电现象发生,从而延长其使用寿命并保障续航里程。 - 微观层面上来看,对于电子设备(如笔记本电脑、MP4播放器等)同样需要监控电池的状态来合理安排它们的使用方式。 在对电池进行监测时主要关注电压、温度以及电流三个方面。特别是针对当前检查整个电池组总电压已不足以保证准确度和安全性的现状而言,这款芯片集成了一系列重要功能(如ADC转换器、SPI接口及单体电压检测)大大减少了所需硬件体积,并简化了原本复杂的任务流程。 本次设计的核心理念是利用AD7280A来采集电池的电压信息并替代之前使用的隔离与切换设备等复杂操作。此外,通过MOSFET实现对电池进行放电均衡以保持一致性避免潜在风险;同时提供实时显示功能报告当前状态并在出现异常情况时触发LED报警提示用户注意。 项目视频演示及电路图将不再包含任何链接或联系方式信息。
  • MCP73833 USB PCB 文件用户册 -
    优质
    本资源提供MCP73833 USB锂电池充电器的设计文档,包括详尽的原理图和PCB源文件以及实用的用户手册,适用于电子工程师进行电池充电解决方案的研究与开发。 本设计分享的是基于MCP73833的USB锂电池充电器原理图/PCB源文件。该MCP73833 USB锂电池充电器具有三个状态LED显示电池的状态,设计非常紧凑且成本低,可与高达5000mAh的电池配合使用。MCP73833 USB锂电池充电器电路的特点包括:欠压保护、MiniUSB连接器、三个状态LED指示灯以及可以选择两个不同的充电电流(100mA和470mA)。PCB板尺寸为30x13 mm(1.18x0.5英寸)。 MCP73833 USB锂电池充电器电路的实物截图及PCB布局图也包含在设计文件中。
  • 基于STM32F103RC子相册DIYPCB文件和)-
    优质
    本项目详细介绍了使用STM32F103RC微控制器打造个性化电子相册的过程,包括电路设计原理图、PCB布局及软件编程代码的分享。适合DIY爱好者学习实践。 所需器件包括:STM32F103RC单片机、3.5寸480x320的IPS显示屏(型号为IPS3P4140)、四个按键及SD卡座,其中S1用于显示下一张图片,S2用于返回上一张图片,S3用于暂停功能,而S4则用来调节屏幕亮度。左上角设有两个排针接口:左边是SW调试接口,右边则是串口LCD测试用的。 在项目初期时遇到一个难题,在尝试使用某些STM32引脚进行操作时遇到了问题,并一度怀疑单片机是否损坏。后来发现是因为这些管脚默认启用了JTAG调试模式导致的问题。解决方法就是需要禁用掉JTAG功能,这样才可以正常使用这些引脚来驱动LCD屏和SD卡。 总结如下: 1. 由于STM32的内部资源有限,因此在项目中使用了IO口模拟的方式来驱动LCD屏幕,并通过SPI1接口连接到SD卡。 2. 这是我首次接触并尝试运用STM32的部分功能,在一些方面还需要进一步学习与实践,例如想用SPI+DMA但目前还不太会操作。 3. 程序是基于原子库进行移植的。在显示图片时,如果图片尺寸超过屏幕大小,则程序会对图像进行缩放处理,这可能导致部分画面丢失或模糊现象出现。 4. 当前版本仅支持BMP、JPG和JPEG格式的照片展示,并且对于较大的图片文件来说刷新速度较慢。 5. 按键操作只在当前显示页面完全加载完毕后才生效。
  • 经典TP4056PCB分享-
    优质
    本项目提供经典的TP4056锂电池充电解决方案的原理图和PCB设计,支持开源下载。适合DIY爱好者和技术开发者学习参考。 TP4056锂电池充电板的开源原理图和PCB(使用pads画板)非常经典。该电路的主要功能是将输入的5V电源转换为4.2V,用于给锂电池充电,并且最大可以提供1A的充电电流。根据不同的电池容量,可以通过调整电路中的Rprog电阻值来改变充电电流;在原理图中对应的是PCB上的R4。 当进行充电时,红灯亮起;一旦充满电后,红灯熄灭并点亮绿灯作为指示。此充电板提供了两种插座选项:3.5mm DC座和Micro-USB座,但示意图仅展示了后者(即Micro USB)。新的电路板设计中增加了3.5mm的DC座,并且通过改变R4电阻值可以调整充电电流大小。
  • 仪与分析仪()-设计解决
    优质
    本项目提供了一种用于检测电瓶放电容量及进行电池分析的仪器设计方案,包括详细的工作原理说明和软件源代码。该方案旨在帮助工程师高效准确地评估电池性能。 电瓶是电动车的动力来源,直接影响到车辆的性能表现,并且是最容易损坏的部分之一。它还直接关系到电动车的成本效益,在一定周期内对电瓶进行容量检测可以及时了解电池的状态并发现个别电池容量不足的问题,从而调整和配对电瓶组以充分发挥其效能。 该系统由AT89C2051单片机组成时钟电路、电压检测及放电控制电路。工作原理如下:当连接到系统的电瓶提供电源后,输入的电压通过接线端子SP1分成三路。一路为7805供电给包含AT89C2051的时钟电路;另一路由7808供电至电池电压检测电路(由集成块U4 LM358构成);还有一路为主放电通路,通过Q5、Q6晶体管及继电器JDQ1与负载电阻R3相连。 当电池接入系统后,LM358会检测其电压。如果该值高于设定的下限(例如10.5V),则取样电压经过分压器处理后输入到比较器反相端口;此时若反向输入电压大于正向,则输出低电平信号至单片机P3.4接口,等待启动命令。按下开始按钮K1时,系统将激活并计时,同时使Q5和Q6导通、继电器JDQ1闭合以开启放电过程(负载为三个并联的20W 12V灯泡)。 在电池电压降至预设极限值(如10.5V)后, 比较器输出高电平信号,单片机检测到此变化会停止计时,并保持显示时间数据。同时控制端口P3.7输出高电平以断开继电器JDQ1和放电回路。此时记录下的时间为电池容量的指标(需乘以其对应的电流值)。除非切断电源或重新启动,否则该系统不会重置其计数功能。 请注意:此电路仅适用于12V电池使用场景中。
  • DIY试仪自.rar
    优质
    本资源为《DIY锂电池容量测试仪自制教程》,详细介绍了如何自己动手制作一款用于测量锂电池容量的仪器,适合电子爱好者的项目实践。 锂电池容量测试仪用于评估电池的存储能力和性能。
  • 升压保护板设计与实现(PCB)-
    优质
    本项目专注于锂电池充电升压保护板的设计与实施,涵盖详细的电路原理及PCB布局。通过优化升压效率和安全性能,提供可靠稳定的电源解决方案。 3.7V锂电池充电,并实现5V升压稳定输出。
  • CN1185功率检设计/PCB文件-
    优质
    本设计提供了CN1185锂电池功率检测器的详细原理与实现方法,包括全面的原理图和PCB源文件。适合深入研究电池管理系统的技术人员参考使用。 该设计提供的是具有1050mAh 3.7V CNI185锂电池功率检测器的设计方案,包括原理图、PCB源文件及相关资料的下载。 CN1185锂电池功率检测器主要由两部分构成:一是容量为1050 mAh的锂离子电池;二是用于测量该电池电源的功率检测器。这款锂离子电池特别轻薄且性价比高,其标准输出电压是3.8V,并可通过专用充电器进行充电,最大输入电流可达5100mA,最大输入电压4.2V。此电池配备预先连接好的JST 2.0插头,方便安装和拆卸。另外它还内置了过流保护机制来防止输出短路。 当该CN1185锂电池功率检测器与锂离子电池相连时,板载的四个LED灯会以百分比形式显示剩余电量(分别为0-25%,26-50%,51-75%,以及76%-100%)。如果错误地插入了连接器,则另一个指示灯将会亮起。该检测设备支持3至4.2伏的输入电压范围,并且在电路中设有短路保护功能,确保安全使用。 此外,CN1185锂电池功率检测器通过不同类型的JST插座(包括两个电池焊盘),能够适应各种连接器类型和不同的电池需求。这使得该设备具有很高的灵活性与实用性。 需要注意的是: - 当输入电压超过9伏时可能会损坏电池电量检测器。 - 在充电过程中应避免使用电池,以确保安全操作。