Advertisement

去雾处理的代码以及对应的图片。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
包含着部分去雾效果相当出色的图像以及相应的代码实现。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本资源提供了一系列用于图像去雾效果优化的代码与示例图片,适用于计算机视觉和图像处理领域的学习与研究。 这段文字介绍了包含一些去雾效果较好的图像和代码的内容。
  • 优质
    去雾代码及图片专注于提供图像处理技术中去除雾霾效果的相关编程代码和实例图片。通过使用特定算法优化视觉质量,使模糊不清的照片恢复清晰度,适用于摄影爱好者和技术开发者探索图像增强领域。 内含一些去雾效果较好的图像和代码。
  • 优质
    去雾代码及图片提供了针对图像处理中去除雾霾效应的相关算法和示例图。此资源适用于增强图像清晰度的研究与应用开发。 这段文字包含了一些去雾效果较好的图像和代码。
  • 技术:单幅
    优质
    本研究探讨了单幅图像去雾技术,旨在通过算法优化提升雾霾天气下拍摄照片或视频的清晰度和视觉效果。 单幅图像去雾使用暗通道先验的单个图像去雾方法可以参考相关文献或资料进行了解。通过boost::ublas和boost numeric bindings实现软抠图但速度较慢,难以处理大图片。我计划用Eigen库重新编写更多的矩阵操作代码以提高性能。在结果文件夹中可以看到相关的输出结果,其中refine_t.png表示经过软抠图细化后的传输图像。
  • Python实现.rar
    优质
    本资源提供了一种基于Python编程语言实现的图像去雾算法源代码。通过使用特定的技术和库函数,可以有效去除雾霾天气拍摄的照片或视频中的模糊效应,增强画面清晰度与色彩饱和度。此项目旨在帮助用户理解和应用计算机视觉技术改善图像质量。 FFA-Net架构包括三个关键组件:首先,为了应对不同通道特征含有不同的权重信息以及图像各像素处雾度分布不均匀的问题,设计了一种新颖的特征注意(FA)模块,该模块结合了通道注意力与像素级注意力机制。这种FA机制不对所有特征和像素一视同仁,通过这种方式,在处理不同类型的信息时提供了额外的灵活性,并增强了CNN的表现能力。 其次,基本块结构包含了本地残差学习及功能注意。其中,本地残差学习允许不重要的信息(例如薄雾区域或低频部分)绕过多个局部残差连接而直接传递给主网络架构,从而使整个体系更专注于关键的信息处理。 最后是基于不同层次特征注意力的融合(FFA)结构。此结构能够自适应地从FA模块中提取并学习到各特征的重要性,并为重要的特征分配更高的权重。此外,这种设计还保留了浅层信息并向深层传递这些信息。 实验结果显示,提出的FFANet在性能和质量上均显著超越现有的单图像去雾方法,在SOTS室内测试数据集上的最佳PSNR指标从30.23db提升到了35.77db。
  • _Matlab__SITR88_
    优质
    本资源提供基于Matlab实现的SITR88算法进行图像去雾处理的代码。适用于需要改善低能见度图像质量的研究与应用场合。 基于MATLAB平台完成图像去雾模糊功能。
  • 基于OpenCV数字
    优质
    本项目提供了一套基于OpenCV库实现的数字图像去雾算法代码,能够有效改善雾霾天气下拍摄照片的清晰度和色彩还原度。 数字图像处理中的去雾代码(使用OpenCV),附带实验报告。
  • 基于OpenCV数字
    优质
    本项目采用OpenCV库编写了数字图像去雾算法的实现代码,旨在改善低能见度天气下图像或视频的质量。通过复杂度较低的方法有效去除雾霾影响,提升视觉清晰度。 数字图像处理中的图像去雾代码(使用OpenCV),附带实验报告。
  • 技术
    优质
    图像去雾处理技术是一种旨在改善被雾霾影响的照片或视频质量的技术。通过复杂的算法分离出场景的清晰细节和霾的影响,增强图像的整体视觉效果与清晰度。 在图像处理领域,去雾是一项关键技术,主要用于改善因大气散射导致的图像模糊问题,并提高图像的视觉质量和细节清晰度。当场景被雾气笼罩时,对比度会降低且色彩暗淡,严重影响了对重要目标的辨识能力。因此,去雾技术应运而生,旨在恢复图像的真实颜色和结构并增强其视觉效果。 该技术主要基于光学原理及大气散射模型进行设计。大气散射是指光线在穿过含有悬浮粒子(如雾、烟)介质时发生偏离的现象,导致远处物体的光线强度减弱形成模糊视效。传统的去雾方法包括暗通道先验理论和物理建模两种途径。 1. **基于暗通道先验**:这一技术由浙江大学汤晓鸥教授团队提出,并已成为最常用的方法之一。其核心假设是大部分图像局部区域至少有一个颜色通道的像素值非常低,这些位置对应未直接照射的部分。通过识别并利用这些“暗”点,可以估计大气光和透射率进而反推无雾状态下的原图。 2. **基于物理模型**:这种方法通常涉及更复杂的数学建模来描述光线在大气中的传播过程,比如HDR成像技术或光照距离模型等方法。通过建立晴天与雾天图像间的关系求解出去雾后的结果。 3. **深度学习方法**:随着卷积神经网络(CNN)的应用越来越广泛,在大量带标签数据的支持下训练出来的模型能够高效准确地执行去雾任务,如DehazingNet和AOD-Net等。这些模型能捕获更复杂的图像特征,从而实现更好的效果。 在实际应用中,该技术被广泛应用到监控视频处理、自动驾驶系统、无人机航拍及遥感图像分析等领域。例如,在自动驾驶场景下去除前方道路的雾气可以提高传感器识别精度并保障行车安全;而在无人机拍摄过程中,则有助于提升照片质量使其更加鲜明生动。 对于开发者而言,理解这些去雾算法的工作原理,并能够有效地实现它们是十分重要的。同时,了解不同方法各自的优缺点也有助于根据实际需求选择最合适的处理技术以达到最佳效果。
  • defog.zip_defog_fpga 算法_FPGA实现_
    优质
    本项目实现了一种高效的图像去雾算法在FPGA上的硬件加速。通过FPGA技术优化了defog.zip中的去雾过程,提高了图像清晰度和处理速度,适用于实时图像去雾应用。 图像去雾算法的FPGA实现采用Xilinx Vivado开发环境。