本书通过一系列基础实例详细讲解了运算放大器的工作原理及仿真技术,旨在帮助读者掌握其设计与应用技能。
探讨运算放大器基本仿真实例首先需要了解其概念与作用:运算放大器(运放)是一种高增益的直接耦合放大器,内部包括多个晶体管、电阻及电容等元件。输出电压与输入电压间存在比例关系即为增益;运放特性涵盖开环增益、带宽、建立时间、摆率、共模抑制比(CMRR)、电源抑制比(PSRR)和失调电压等。
仿真过程中使用模拟电路软件,如Workview或Hspice2005.03。设计目标为熟悉软件并实现两级运放的设计,采用韩国MagnaChip 0.5微米CMOS工艺库。
两级运算放大器由差分输入与共源级组成:m1和m2作为差动输入管以放大差模信号且抑制共模;偏置电流来自基准电压产生的m5,而m3、m4的电流镜确保两端电流一致。共源级包括负载管(m8)及倒相器输入管(m7),提供更大增益。
设计时需先定静态工作点:使用Hspice中的.op语句了解晶体管状态,并通过.lis文件查找region关键字以确定各管子的工作区间,确保所有晶体管处于饱和区且电路对称。调节偏置与电流镜的对称性尤为重要。
开环增益为无反馈时的放大倍数;频率响应和相位裕度是稳定性及工作范围的关键指标,需至少保持45°以上,通常通过添加弥勒电容或电阻实现补偿。
输入失调电压由电路不对称或工艺误差造成。仿真中可使用直流扫描法测定不同条件下的失调电压变化情况。
此外还需注意输出摆幅等参数的验证以确保运放准确处理0输入信号的能力。最终设计完成后,将获得两级运算放大器的具体图示及性能指标,从而在实际制作前发现并解决潜在问题。