Advertisement

C++实习作业中,棋盘N皇后问题。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过回溯法,对M棋盘N皇后问题(C++实习作业)进行了解决。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • N的M解法(C++
    优质
    本作品是基于C++编写的关于解决N皇后问题的一种算法实现,特别针对M棋盘的情况进行优化和探讨。通过编程实践加深对回溯算法的理解与应用。 M棋盘N皇后问题(C++实习作业),使用回溯法实现。
  • N及其解法:在n*n上的N-MATLAB开发
    优质
    本项目探讨了经典的N皇后问题,并使用MATLAB编程实现多种算法来求解该问题,在任意大小的n*n棋盘上放置n个皇后,使其互不攻击。 八皇后谜题是指在一个8×8的棋盘上放置八个象棋皇后,使得任意两个皇后都不会相互攻击。因此,在解决方案中,没有任何两个皇后位于同一行、列或对角线上。八皇后问题是一类更广泛的n皇后问题的一个特例,该问题是将n个非攻击性的皇后放在一个n×n的棋盘上。对于所有自然数n(除了2和3),都有解存在。 改进提示: 1) 运行.m文件并输入棋盘大小(即皇后的数量)。 2) 对于不同尺寸的棋盘,没有固定的解决方案,因此每次运行程序时都可能看到不同的结果。
  • C语言N
    优质
    本文介绍了使用C语言解决经典的N皇后问题的方法和算法实现,通过回溯法展示如何在棋盘上放置N个皇后使其互不攻击。 简单易懂的回溯算法如下:使用`while(k>0)`循环表示主要逻辑流程,在此过程中对数组元素进行递增操作并检查其合法性。具体步骤为: 1. 将当前索引处的值加一,即执行 `x[k]++`。 2. 使用内层循环来确保当前位置上的数值是有效放置的位置:如果不符合条件则继续增加该位置的数直到满足条件或达到上限N为止(使用表达式`while(!place(k) && x[k]<=N)`)。 3. 当找到一个合适的值时,检查是否已到达数组末尾: - 如果已经到了最后一个元素,并且当前放置有效,则计数值加一并输出结果; - 否则将索引递增到下一个位置继续尝试(通过执行`if(x[k]<=N) { if(k==N) { count++; output(); } else k++;}`)。 4. 若当前位置无法找到合适的数,说明之前的某个选择可能需要回溯调整,则将该处值重置为0,并退回前一个状态以重新寻找其他可能性(通过执行`else { x[k]=0; k--; }`来实现)。
  • NC++解法
    优质
    本文章详细介绍了如何使用C++编程语言解决经典的N皇后问题,通过回溯算法实现高效求解,并提供了代码示例和运行说明。 利用回溯法求解N皇后问题(其中N的值不能小于4,因为当N小于4时无解),需要定义三个函数:一个用于判断安置元素是否合法,一个用于递归地安置元素,并且还有一个用于显示皇后的布局情况。通过主函数实现上述功能:输入给定的N值后,显示出所有可能的皇后安放位置(用1表示每个皇后的位置)。最后输出共有多少种不同的方法可以放置这些皇后。
  • N验报告
    优质
    本实验报告针对经典的N皇后问题,探讨了如何在N×N棋盘上放置N个皇后,使其相互间不受攻击,并通过回溯算法实现了多种解法。 关于n皇后的实验报告 一、需求分析: 本次实验的目标是解决N皇后问题。该问题是国际象棋中的一个经典问题,要求在N×N的棋盘上放置N个皇后,使得任意两个皇后都不能在同一行、同一列或同一条斜线上。 二、解决方案设计 针对上述需求,我们采用回溯算法来实现。回溯法是一种通过探索所有可能解的方法,在搜索过程中动态地产生问题的所有子集并进行检查的策略。这种方法适用于解决组合优化问题以及需要穷举所有可能性的问题。 三、代码实现 首先定义一个二维数组表示棋盘,并初始化为全0状态;接着编写递归函数尝试放置皇后,如果当前位置满足条件则标记该位置为1(代表有皇后),否则跳过此步继续寻找下一个合适的放置点。当成功完成一行的摆放后,进入下一层递归处理后续行直至所有皇后的安置完毕或确认当前方案不可行。 四、测试与验证 编写一系列测试用例来检验算法的有效性和鲁棒性,包括但不限于标准大小(如8皇后)以及极端情况(例如1×1棋盘)。通过这些案例可以确保程序在各种输入条件下都能正确运行并输出合理结果。 五、总结报告 通过对N皇后的求解过程进行详细记录和分析,不仅加深了对回溯算法的理解与应用能力,还锻炼了解决复杂问题的逻辑思维。此外,在实际编码过程中也遇到了不少挑战如边界条件处理等,并通过不断调试完善最终实现了预期目标。 本次实验从理论到实践全方位地探讨了一个经典的计算机科学难题,为后续学习奠定了坚实基础。
  • NC/C++解决方案
    优质
    本文档提供了针对经典计算机科学难题——N皇后问题的C/C++编程语言实现方案。通过详细代码示例和解释,帮助读者理解如何利用回溯算法高效地解决该问题。适合对算法与数据结构感兴趣的初学者及中级程序员阅读研究。 这是我在上了算法设计与分析课后完成的一道作业题,供大家参考学习回溯算法原理。
  • NC语言解法
    优质
    本文章详细介绍了如何使用C语言解决经典的N皇后问题。通过回溯算法实现多种规模棋盘上皇后的最佳布局方案,并提供了代码示例和解释。适合编程爱好者和技术学习者参考阅读。 N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行只能放一个,并且确保这些皇后不能互相攻击(即同一行、同一列或同一条对角线上的两个皇后的相互位置都不允许)。这个问题在数据结构课程中常常让人感到困扰。
  • N解决方案:在上放置N而不相互攻击的经典国际象挑战之一。
    优质
    N皇后问题是经典国际象棋布局难题,目标是在NxN棋盘上安置N个皇后,使其彼此间不处于可互相攻击的位置。 N皇后问题是一种基于国际象棋的古老难题,在一个棋盘上放置8个皇后而不互相攻击(即任意两个皇后的行、列或对角线不相同)。编写代码来枚举所有解决方案是一个有趣的小练习。 本周的任务是编写程序,以显示将n个皇后放在n x n棋盘上的单个解。用户输入棋盘的大小n,输出应为形式如(1, 1), (7, 2)...等的一组坐标(xi代表行号,yi代表列号)。 例如: 输入8 输出:(1,1),(7,2),(5,3),(8,4),(2,5),(4,6),(6,7),(3,8) 注意n应在4到25之间。
  • N求解演示
    优质
    N皇后问题求解演示通过多种算法展示如何在NxN棋盘上放置N个皇后,使她们两两互不攻击。本演示旨在探索优化解决方案并提供互动式学习体验。 原博文主要介绍了如何在Java项目中使用Maven进行构建管理,并详细解释了POM.xml文件的配置方法以及依赖关系的处理技巧。通过一系列示例代码展示了如何高效地利用Maven来提高开发效率,简化项目的管理和维护工作。此外还分享了一些最佳实践和常见问题解决策略,帮助读者更好地理解和应用Maven在实际项目中的作用。