Advertisement

基于球面全景图像的矿山场景三维重构

  • 5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究利用球面全景技术采集矿山环境数据,并通过算法实现高效精准的三维模型重建,为矿山安全及自动化作业提供有力支持。 三维建模是智慧矿山建设中的关键环节之一。本段落针对传统方法中存在的建模复杂、效率低以及不够直观等问题,将虚拟现实领域的三维全景技术应用于智慧矿山领域,并系统地研究了球面全景影像生成的方法。文中还提出了基于球面全景影像的虚拟场景交互与路径规划方案,并设计了一个三维全景智慧矿山原型系统。实验结果表明,利用基于全景序列影像的矿山场景增强现实技术可以有效弥补传统方法的不足之处,适用于展示真实的矿山环境。这项技术能够为设计生产、安全管理、勘探数据验证以及教育培训提供一个真实可视化的平台,有助于管理人员做出正确的决策。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究利用球面全景技术采集矿山环境数据,并通过算法实现高效精准的三维模型重建,为矿山安全及自动化作业提供有力支持。 三维建模是智慧矿山建设中的关键环节之一。本段落针对传统方法中存在的建模复杂、效率低以及不够直观等问题,将虚拟现实领域的三维全景技术应用于智慧矿山领域,并系统地研究了球面全景影像生成的方法。文中还提出了基于球面全景影像的虚拟场景交互与路径规划方案,并设计了一个三维全景智慧矿山原型系统。实验结果表明,利用基于全景序列影像的矿山场景增强现实技术可以有效弥补传统方法的不足之处,适用于展示真实的矿山环境。这项技术能够为设计生产、安全管理、勘探数据验证以及教育培训提供一个真实可视化的平台,有助于管理人员做出正确的决策。
  • 单张建筑
    优质
    本研究提出一种新颖的方法,利用单张图片在结构化场景中重建建筑物的三维模型。该技术结合先进的计算机视觉和深度学习算法,能够准确捕捉并解析复杂建筑的几何特征与细节信息,为虚拟现实、城市规划及建筑设计提供强大支持。 本段落提出了一种基于结构化场景的单张图像建筑物三维重建方法,专门针对无法通过激光扫描或多张图像进行三维重建的情况,如已损毁或不再存在的建筑。该方法首先利用RANSAC算法以及最小距离法来分别确定灭点直线和灭点;随后依据平行平面、包含平行信息的任意平面及含有垂直信息的任意平面对应的模型解算出三维坐标。 以某高校图书馆为例,实验重建了其三维模型,并对其精度进行了分析。结果显示,该方法能够实现高精度的重建效果,最小误差为0,最大误差仅为5.8%,整体精确度保持在1.9%左右,达到了预期的三维重建标准要求。此外,在四川省白鹿领报修院教堂的应用中也成功建立了受损建筑的三维模型,并取得了良好的重建成果。 该方法适用于具有平行、垂直结构以及灭点和平面特征的建筑物场景,能够生成详细的几何线框模型并采用纹理映射来增强细节表现力。因此,它不仅适合现存建筑和文化遗址的三维重建需求,也具备广泛的应用前景。
  • 多视高效
    优质
    本研究提出了一种基于多视图图像的高效三维场景重建方法,旨在通过优化算法和深度学习技术实现快速、精准的3D建模。 《多视图图像的快速三维场景重建》是一篇关于自动重建领域的优秀论文,可供参考以备将来撰写论文或进行文献综述之用。
  • OpenGL
    优质
    本项目基于OpenGL技术开发,旨在实现高效、美观的三维场景构建与渲染。通过优化图形处理算法,提供丰富的交互体验和视觉效果。 使用OpenGL绘制一个具有真实感的三维场景,其中包含两个物体,并实现光照、纹理效果以及交互式的场景漫游功能。整个过程包括从建模到坐标变换,再到消隐算法、光照模型、面绘制算法及纹理映射等步骤。
  • 申抒含-大规模技术
    优质
    申抒含专注于利用图像技术进行大规模场景的三维重建研究,致力于开发高效且精确的算法以实现复杂环境下的高精度建模。 ### 基于图像的大规模场景三维重建 #### 三维几何视觉的核心问题 三维几何视觉是计算机视觉领域的一个重要分支,其主要关注如何从二维图像中恢复出关于物体或环境的三维信息,包括场景的空间结构以及相机的位置和姿态等。这些信息对于实现智能机器人、无人驾驶汽车及增强现实(AR)应用至关重要。三维几何视觉的核心问题可以归结为两个方面: 1. **场景结构**:即通过一系列图像来重建场景的空间布局。 2. **相机位姿**:确定在拍摄每张图片时,相机相对于世界坐标系的位置和姿态。 #### 实现路径 实现三维几何视觉主要有两条途径:Simultaneous Localization and Mapping (SLAM) 和 Structure from Motion (SfM)。 ##### SLAM(同时定位与建图) SLAM是一种实时方法,在线利用视频序列来重建场景的稀疏、准稠密或密集结构,并估计相机的位置和姿态。其关键步骤包括: - **局部匹配**:确定图像间的对应关系。 - **PnP + 三角化**:通过透视投影(PnP)及三角法来确定特征点位置与相机位姿。 - **局部束调整**:优化相机的位姿和特征点的位置,提高重建精度。 - **闭环检测**:识别已访问过的区域以避免重复建图。 - **图优化**:进一步提升整体图像质量。 ##### SfM(多视角重构) SfM是一种离线方法,通过处理多个角度的图片来重建场景的稀疏结构和相机位姿。该过程包括以下步骤: - **完全匹配**:获取所有图像间的对应关系。 - **种子选择**:挑选最佳视图进行初始化。 - **两视图重构**:分析两张照片以估计相机位置及场景结构。 - **PnP + 三角化**:确定特征点的位置与相机的位姿。 - **局部束调整**:优化相机和特征点的位置,提高精度。 - **全束调整**:全局优化所有图像中的信息。 #### 图像三维重建基本流程 该过程包括以下几个阶段: - **多视角图片获取**:收集不同角度的影像数据。 - **稀疏点云生成**:通过匹配特征点并使用PnP等方法,构建出稀疏点云。 - **稠密点云生成**:利用深度学习技术等进一步生成密集程度更高的三维图像。 - **语义分割**:对点云进行分类,例如区分地面和建筑物等元素。 - **模型创建**:结合几何特征与语义信息产生最终的三维模型。 #### Progressive SfM with Orthogonal MSTs Progressive SfM 是一种改进的SfM方法,旨在解决传统技术中存在的匹配时间消耗过长及异常值问题。该方法引入了新的概念: - **相似性图**:描绘图像间的相似度。 - **匹配图**:记录每对图片之间的特征点关联。 - **位姿图**:展现相机间相对的几何关系。 - **视图图**:综合考虑几何结构和内部分配。 该方法的主要步骤包括: 1. **初始化**:选取初始图像作为参考。 2. **匹配与融合**:逐步加入新的视角,利用正交最小生成树(OMST)策略优化新视角的选择过程。 3. **优化**:通过局部及全局束调整等技术来提高重建结果的质量。 通过深入研究和应用这些技术和方法,可以更高效地实现大规模场景的三维重建,并为智能系统提供更为精确且丰富的环境感知功能。
  • VS2010OpenGL
    优质
    本项目基于Visual Studio 2010平台利用OpenGL技术构建三维场景,实现高效图形渲染与交互操作,适用于游戏开发、虚拟现实等领域。 解压后可以直接运行的 OpenGL 3D 场景:直升机绕着盆地飞行(适用于 VS2010)。
  • WashU-Research-0.1.rar_研究_建_平_建筑
    优质
    本资源为华盛顿大学的研究项目文件,专注于将平面图转换成三维模型的技术,并涉及复杂的建筑三维重建方法。适合对三维场景重建感兴趣的学者和技术人员使用。大小0.1RAR,内含详细研究报告和数据集。 在计算机科学与信息技术领域,三维场景重建是一项重要的研究方向,在建筑行业尤其如此,它为设计、规划及管理提供了强大的工具。“WashU-Research-0.1”项目专注于这一领域的研究,通过平面图数据实现建筑的三维重建。这项技术的应用不仅能够提高建筑设计效率,还能帮助我们更好地理解和模拟真实世界中的空间环境。 平面图到三维模型转换的核心在于将二维图纸转化为立体结构。这个过程包括多个关键步骤和技术: 1. 图像预处理:需要对输入的平面图进行数字化,通常涉及扫描和校正以确保图像清晰且无扭曲。然后需进行图像分割识别出线条、形状等元素,这是后续分析的基础。 2. 图形解析:从平面图中提取几何信息如线段、曲线及建筑结构的关键特征(墙体、门窗)。这一步可能需要用到模式识别与图像分析技术。 3. 三维建模:基于图形解析结果运用几何算法构建模型。常用方法包括边界表示法(B-Rep)、体素法和细分表面法等,需要合理地将二维信息扩展到三维空间,并保持结构准确性及完整性。 4. 拼接与优化:在建立模型时可能会遇到重叠、缺失或不一致问题,通过拼接和优化技术可以消除这些问题以确保模型的连贯性和一致性。 5. 渲染与可视化:对构建出的三维模型进行渲染赋予材质、光照效果使其更真实,并提供交互式的界面让用户从不同角度查看编辑分析模型。 “WashU-Research-0.1”项目的实施表明华盛顿大学的研究团队在这一领域取得了显著进展。他们可能开发出了更为高效和准确的算法,或是实现了更加友好的用户界面。深入研究项目中的代码和文档可以进一步了解他们在平面图三维重建方面的创新成果。 基于平面图的建筑三维重建技术是计算机图形学与BIM的重要交叉领域,它将传统建筑图纸与现代数字技术相结合为建筑设计及城市规划带来了革命性的变革。随着技术的发展我们期待看到更多此类创新项目推动这项技术在更广泛领域的应用。
  • 彩色与深度复杂计算
    优质
    本研究提出了一种结合二维彩色图像和深度信息的技术,用于生成复杂的三维场景计算全息图,显著提升了视觉真实感和再现质量。 本段落提出了一种利用二维彩色图像与深度图生成计算菲涅耳全息图的方法。该方法将二维彩色图像依据深度图划分为多层物体表面信息,并将每一层的物面深度值转换为菲涅尔衍射距离。基于层析原理,采用单步菲涅尔衍射算法可以获取三维场景的计算全息图。研究结果表明,这种方法能够准确地记录和再现复杂的三维场景。此外,在再现图像时使用强度叠加法去除散斑现象,从而提升了再现三维图像的质量。
  • 使用Three.js
    优质
    本项目采用Three.js库创建了一个基础的三维场景,实现了基本的3D图形渲染和交互功能。适合初学者学习和实践。 这个WebGL的Demo是我学习Three.js过程中编写的作品,其中包括天空盒、水面绘制、json模型导入、基于高程图的地形绘制以及阴影效果等功能。建议使用火狐浏览器来运行此demo;如果选择在Chrome浏览器上运行,则需要通过命令行模式,在cmd窗口中输入:cd C:\Program Files (x86)\Google\Chrome\Application,然后输入chrome.exe --allow-file-access-from-files以允许文件访问权限。