Advertisement

基于WENOZ+格式的二维欧拉方程双马赫数反射问题求解

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究采用WENOZ+格式对二维欧拉方程中的双马赫数反射现象进行数值模拟,探讨激波与流体相互作用机制。 WENOZ+格式求解二维欧拉方程双马赫数反射问题的算例可以调整网格和CFL参数。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • WENOZ+
    优质
    本研究采用WENOZ+格式对二维欧拉方程中的双马赫数反射现象进行数值模拟,探讨激波与流体相互作用机制。 WENOZ+格式求解二维欧拉方程双马赫数反射问题的算例可以调整网格和CFL参数。
  • 叶栅
    优质
    本研究聚焦于二维叶栅中欧拉方程的数值求解方法,探讨了适用于复杂流场分析与优化设计的有效算法。 二维叶栅欧拉方程求解是流体力学中的重要课题,在航空、航天及机械工程等领域具有广泛应用价值。理解气体流动的无粘特性对于设计更高效的叶片、涡轮机和风扇等至关重要。欧拉方程描述了理想流体运动的基本规律,本问题将使用C++编程语言结合Runge-Kutta方法和有限体积法来数值求解这些方程。 C++是一种高效且灵活的语言,特别适合科学计算与工程应用。在解决复杂的数值问题时,其优势在于高效的执行速度、灵活性及可扩展性。编写二维叶栅欧拉方程的求解器时,可以利用C++面向对象的特点来组织代码,使其结构清晰,并便于维护和进一步发展。 欧拉方程包括连续性方程、动量方程以及能量方程,在二维情况下描述沿x轴与y轴方向的质量守恒。由于这些偏微分方程在实际问题中难以解析求解,通常采用数值方法来逼近其解。 Runge-Kutta方法是常微分方程的数值积分技术,通过迭代过程逐步更新流场状态以实现时间推进。有限体积法则是一种处理偏微分方程的有效方式,它基于控制体的概念,在二维叶栅问题中将物理区域划分为一系列小网格,并在每个网格上应用质量、动量和能量守恒定律。 求解Two-Dimensional Euler Equations的步骤可能包括: 1. 网格生成:根据需求建立合适的网格系统并处理边界条件。 2. 数值格式:定义有限体积法中的差分格式,例如高分辨率且能有效避免振荡现象的JST(Jameson-Schmidt-Turkel)格式。 3. 时间推进方法选择:采用适当的Runge-Kutta阶数实现时间步更新。 4. 稳定性分析:确保数值方案在动态特性捕捉方面的稳定性。 5. 边界条件处理:包括无滑移壁或自由流出等边界情况的考虑。 6. 后期处理:输出速度分布、压力分布等相关流场信息,以及可视化结果。 通过这样的C++程序可以模拟二维叶栅周围的流动状况,并分析气动性能以优化设计。此外,该程序的设计结构使其易于适应其他类型的流动问题,仅需适当修改和扩展即可实现应用范围的拓展。
  • 【学习记录】20200620关算例释.docx
    优质
    这份文档《学习记录》记录了作者于2020年6月20日对双马赫反射问题的具体算例进行详细解析的学习过程,旨在深入理解复杂流体力学现象。 本段落介绍了计算流体力学中的双马赫反射标准算例,该算例常用于验证CFD程序对激波波系的分辨率能力。文中仅包含算例配置细节,并不涉及相关程序代码。
  • WENO-CU6Riemann
    优质
    本研究提出了一种基于WENO-CU6格式的方法,用于解决流体力学中的二维Riemann问题,显著提高了计算精度和稳定性。 WENO-CU6格式二维Riemann问题求解器支持网格调节、CFL数调整及初始条件重新设置,并采用三阶时间格式。
  • 七阶WENO
    优质
    本项目开发了一种基于七阶WENO(加权本质非振荡)技术的高效数值方法,专门用于求解二维欧拉方程。此求解器能够准确模拟复杂流体动力学现象,适用于航空航天等领域的研究与工程实践。 7阶WENO的双马赫反射求解器使用Fortran编写。该程序允许自由更改网格规模和CFL数,并且数据输出为dat格式,可以直接用tecplot打开。
  • Euler_twod_euler_fluxes_v2.zip_ Roe 法_
    优质
    本资源提供了一种求解二维欧拉方程的方法——Roe格式,并以压缩包形式包含相关代码文件,适用于流体力学中复杂流动问题的数值模拟。 二维欧拉方程是流体力学中的基本方程组,用于描述不可压缩流体的运动。这个压缩包包含了一个名为“twod_euler_fluxes_v2.f90”的源代码文件,这是一个用Fortran语言编写的程序,旨在求解二维欧拉方程的数值模拟。接下来我们将深入了解二维欧拉方程及其计算方法。 二维欧拉方程由五个非线性常微分方程组成: 1. 质量守恒:描述流体质量在时间和空间内的变化。 2. 动量守恒(沿x轴和y轴):描述流体动量在两个方向上的变化。 3. 能量守恒:描述流体内能的变化。 这些方程通常表示为: \[ \frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial y}(\rho v) = 0 \] \[ \frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}(\rho u^2 + p) + \frac{\partial}{\partial y}(\rho uv) = 0 \] \[ \frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(\rho uv) + \frac{\partial}{\partial y}(\rho v^2 + p) = 0 \] \[ \frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x}((\rho E + p)u) + \frac{\partial}{\partial y}((\rho E + p)v) = 0 \] 其中,\( \rho \) 是密度,\( u \) 和 \( v \) 分别是沿x轴和y轴的速度分量,\( p \) 表示压力,而 \( E \) 是总能量(动能加内能)。 在“twod_euler_fluxes_v2.f90”程序中,可以使用两种不同的通量计算方法:Roe平均和旋转的RHLL格式。 1. Roe平均:这是一种常用的激波捕捉通量差分格式,它基于Roe平均状态来构建一个近似解,并通过线性化方程组得到特征值与特征向量以形成通量函数。 2. 旋转的RHLL格式:这是Roe和HLL(Harten-Lax-van Leer)方法的一种结合。该方法利用两个估计波速简化了计算,而旋转的RHLL则通过改变这些速度的方向提高对流占主导区域中的稳定性和精度。 数值求解过程中包括离散化、时间推进以及稳定性分析等关键步骤。通常采用有限体积法将连续域分解为多个控制体,并在每个时间步中更新物理量。为了确保数值稳定性,选择合适的时长和空间间隔至关重要,这涉及到Courant-Friedrichs-Lewy (CFL) 条件的使用。 此外,在处理二维欧拉方程的模拟问题时还需要考虑边界条件如无滑移壁、自由流出等的应用。“twod_euler_fluxes_v2.f90”源代码中可能包含这些边界情况下的逻辑处理。该程序涵盖了流体力学的核心内容,包括数值求解技巧以及理论在实际中的应用方法。 通过理解和执行这个程序,我们能够深入学习流体动力学模型的数值模拟技术,并掌握如何将相关理论应用于具体问题之中。
  • 差分加权隐
    优质
    本研究探讨了一种针对双曲型偏微分方程的新型加权隐式差分算法,有效提升数值解的稳定性和精度。 双曲问题差分格式的加权隐式格式求解方法通过利用边界条件和初值条件来计算第一级解,并且根据递推方程进一步求得任意级别的解。文档中包含思路分析以及结果图,建议配合提供的MATLAB代码一起阅读以更好地理解整个过程。
  • CFD-OpenFOAM案例分析: doubleMach现象研究
    优质
    本案例通过CFD软件OpenFOAM对双马赫反射现象进行数值模拟与分析,深入探讨流体力学中的doubleMach结构特征及其形成机制。 使用开源软件OpenFOAM求解可压双马赫反射(doubleMach)算例,求解器为rhoCentralFoam。
  • 可压缩Euler器-MATLAB法代码(CFD项目)
    优质
    本项目为计算流体力学(CFD)研究设计,提供了一个基于MATLAB环境下的二维可压缩Euler方程求解器,采用经典的欧拉数值方法进行气体动力学问题的仿真分析。 该存储库包含MATLAB代码,用于使用磁通分解方法求解二维可压缩Euler方程。目前采用Steger-Warming方案(1981年)。
  • 微分法:法与改进
    优质
    本简介探讨了微分方程数值解法中的欧拉法及其改进版。这两种方法为解决复杂微分方程提供了简便途径,是初学者入门的重要工具。 通过利用欧拉公式,并对其进行改进以求解微分方程。可以调整微分方程的形式以及区间精确度来满足不同的需求。