Advertisement

基于递归CycleSpinning的Wavelet-Contourlet变换红外图像增强方法 (2013年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文提出了一种结合Wavelet-Contourlet变换与递归CycleSpinning技术的创新方法,旨在提升红外图像的质量和清晰度。该方法通过优化细节表达和对比度增强,在复杂环境下显著改善了目标识别性能。 针对Contourlet变换缺乏平移不变性的缺陷,本段落提出了一种基于小波-Contourlet变换的红外图像增强算法,并结合递归Cycle Spinning技术来消除小波-Contourlet变换中的失真现象。实验结果表明:相较于单独使用小波变换和单独使用Contourlet变换的方法,该方法在去噪效果上更为显著,能够获得更高的PSNR值,从而改善了图像的视觉效果。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CycleSpinningWavelet-Contourlet (2013)
    优质
    本文提出了一种结合Wavelet-Contourlet变换与递归CycleSpinning技术的创新方法,旨在提升红外图像的质量和清晰度。该方法通过优化细节表达和对比度增强,在复杂环境下显著改善了目标识别性能。 针对Contourlet变换缺乏平移不变性的缺陷,本段落提出了一种基于小波-Contourlet变换的红外图像增强算法,并结合递归Cycle Spinning技术来消除小波-Contourlet变换中的失真现象。实验结果表明:相较于单独使用小波变换和单独使用Contourlet变换的方法,该方法在去噪效果上更为显著,能够获得更高的PSNR值,从而改善了图像的视觉效果。
  • Contourlet非线性
    优质
    本研究提出了一种基于Contourlet变换的红外图像非线性增强方法,有效提升图像细节和对比度,适用于目标识别与跟踪。 为解决红外图像对比度低及噪声大的问题,本段落提出了一种基于Contourlet变换的非线性增强算法。作为一种高效的方向多尺度分析方法,Contourlet变换能够在任意尺度上实现方向分解。 首先,通过应用Contourlet变换对图像进行处理,在不同尺度和方向上得到一系列子带系数:包括低频子带系数以及各个通向方向上的子带系数。接着使用非完全贝塔函数来调整这些低频子带系数以提升整体对比度;同时利用一种特定的非线性增益函数,对各带通方向子带系数进行处理,并根据噪声水平设定阈值,抑制小于该阈值的小幅变化增强大于这个阈值的变化。 经过逆Contourlet变换后生成最终增强图像。实验结果显示,这种方法能够显著提高低对比度红外图像的质量,在视觉效果和定量评估指标上均优于传统的直方图均衡化、小波变换等技术,并且保持了更多的轮廓特征,避免了上述方法在处理噪声时过度放大以及细节表现不足的问题。
  • 一种小波(2015
    优质
    本文提出了一种利用小波变换技术来提升红外图像质量的方法。通过优化算法处理噪声与细节,增强了目标识别和场景分析能力,在2015年取得了显著效果。 图像增强处理是红外图像预处理中的必要且关键步骤。由于目标物体信号弱导致的对比度低以及外界噪声干扰造成的图像质量差等问题,本段落提出了一种结合小波变换、奇异值分解与阈值滤波技术的新型算法。 具体而言,该方法首先通过小波变换将红外图像分为高频系数和低频系数两部分。在低频域中应用奇异值分解来提升对比度及改善图像质量;而在高频域则采用阈值滤波以减少噪声并突出细节特征。最后,经过逆向的小波重构过程获得最终的增强效果。 实验结果显示:相较于传统方法,该算法能够显著提高红外图像的对比度和细节表现力,在视觉上更接近于人类感官体验的标准,因此被认为是一种有效的处理手段。
  • 小波小目标检测(2013
    优质
    本研究提出了一种结合小波变换与图像增强技术的方法,旨在提高红外图像中小目标的检测精度与效率。该方法有效提升了复杂背景下的目标识别能力。 本段落提出了一种基于小波变换的单帧红外图像检测方法,将小目标检测问题简化为带通滤波的过程。该方法首先利用小波变换分解图像,并直接舍弃低频分量背景信息;随后对提取出的三个高频成分分别进行分析以去除噪声;接着重构各个高频部分;最后通过增强技术提升小目标灰度并进一步抑制干扰因素。计算机仿真结果显示,此方法能够准确高效地检测到小目标,并且能够在一定程度上克服云层和建筑物带来的干扰问题。
  • 伪中值滤波与小波技术(2013)
    优质
    本文提出了一种结合伪中值滤波和小波变换的创新方法,有效提升红外图像的质量和细节清晰度,尤其在低信噪比条件下表现优异。 针对红外图像对比度低且信噪比差的特点,本段落提出了一种基于伪中值滤波和小波变换的弱小目标增强算法。首先通过伪中值滤波去除部分噪声,然后进行小波变换得到相应的系数。对于小于阈值的小波系数,则采用临近系数保留法进行进一步处理以避免将真实的目标误判为噪声而被过滤掉;而对于大于阈值的系数则执行非线性增强操作。最后重新构建图像,获得去噪且对比度提升的效果。实验结果显示该算法有效提高了红外图像质量,并更符合人眼视觉特性需求。
  • 小波与直均衡
    优质
    本研究提出了一种结合小波变换和直方图均衡技术的新型算法,旨在提升红外图像的质量和清晰度,特别适用于低光照或恶劣环境下的成像需求。 基于红外图像低分辨率、低对比度及视觉特性差的特点以及传统直方图均衡化方法会丢失细节并增强噪声的缺点,本段落提出了一种结合小波变换多尺度特性和直方图均衡化的新型算法来改进红外图像增强技术。 该研究聚焦于解决由自然因素和技术限制导致的红外图像质量问题。红外成像通常因目标与背景间的热交换、较长波长及探测器单元不一致性等因素而呈现低信噪比、高空间相关性等特性,这些问题影响了其在侦查和评估中的应用效果。 传统上采用直方图均衡化来增强对比度并改善亮度分布。然而这种方法的局限在于它可能丢失图像细节,并且会增加噪声,从而降低整体质量。小波变换作为一种多尺度分析工具,在不同分辨率下提取局部特征方面具有优势,这为改进红外成像技术提供了新的视角。 结合这两种方法的新算法首先通过小波变换对原始图像进行分解和处理以增强其局部特性;之后再应用直方图均衡化调整全局对比度。这样的组合能够确保在提高图像清晰度的同时保留更多细节信息,并减少噪声的影响,从而达到更好的视觉效果。 研究者们利用Matlab仿真平台对该算法进行了测试验证,展示了该方法的有效性及其优化潜力。这项工作对于提升红外成像技术的应用性能具有重要意义,尤其是在科学研究和军事领域中对目标侦查与评估能力的提高方面。 关键词包括“红外”、“图像增强”、“小波变换”、“直方图均衡化”以及“对比度”,这些术语反映了该研究的核心内容和技术路径。
  • Contourlet及多尺度Retinex水下
    优质
    本研究提出了一种结合Contourlet变换与多尺度Retinex技术的创新算法,有效提升水下图像的清晰度和色彩还原度,克服了传统方法在处理复杂背景和光照条件下的局限性。 针对水下图像对比度低、边缘模糊及噪声大的特点,本段落提出了一种基于非下采样Contourlet变换与多尺度Retinex的增强算法。该方法首先对水下图像进行多尺度多方向的非下采样Contourlet变换;然后通过多尺度Retinex技术调整低频系数以提高整体对比度;接着,在各个带通子带上估计噪声,并抑制模值低于阈值的系数,同时改进神经网络中的Sigmoid函数来调节高于该阈值的系数。最后,经过非下采样Contourlet逆变换得到增强后的图像。 与传统方法相比,此算法能够有效降低水下图像中的背景噪声、提升对比度以及突出目标轮廓,并且获得了更高的对比度评估分数。
  • 非抽样Contourlet改进算
    优质
    本研究提出了一种基于非抽样Contourlet变换的新颖方法,旨在提升红外图像的质量和清晰度,有效解决传统算法中存在的问题。 本段落提出了一种基于非抽样Contourlet变换的红外图像增强算法。该方法通过使用非线性函数修正红外图像的Contourlet变换系数,旨在同时提升图像中的有用信息并抑制噪声成分。实验结果表明,与传统的方法相比,此新算法能够更有效地突出和增强红外图像中的细节及纹理特征。
  • SVD算序列应用研究____
    优质
    本研究探讨了奇异值分解(SVD)算法应用于红外序列图像增强的有效性,特别关注改善图像质量和清晰度。通过实验验证,展示了SVD技术在提升红外成像领域的潜力和价值。 基于SVD的红外目标增强具有一定的参考意义,可以查阅相关资料了解。
  • 医学2013
    优质
    本研究针对医学图像质量提升需求,提出了一种有效的增强方法,旨在改善图像对比度和细节显示,为临床诊断提供更清晰、更有价值的信息。 为了增强医学图像中的感兴趣区域的辨识度,针对CT图的特点提出了一种新的算法(粗糙计算断层摄影算法,RCTA)。该算法基于粗糙集理论中的不可分辨关系原理,利用人体不同组织对应不同的CT值这一特性来定义等价关系。通过这种方式将医学图像划分为多个区域,并保持感兴趣区域的灰度不变,同时对其他非关键区域进行最大/最小化处理以增强对比度。 经过RCTA算法的应用和测试,在临床实践中对300余张肺部医学影像进行了实验验证。