Advertisement

Mifare系列卡的Crypto-1加密算法源代码

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目提供Mifare系列卡片使用的Crypto-1加密算法的开源实现。该算法是NXP半导体公司开发的一种用于保护RFID通信安全的重要技术,适用于研究与教学用途。 mifare系列卡片的crapto-1加密算法源码可以使用devkitARM进行编译。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MifareCrypto-1
    优质
    本项目提供Mifare系列卡片使用的Crypto-1加密算法的开源实现。该算法是NXP半导体公司开发的一种用于保护RFID通信安全的重要技术,适用于研究与教学用途。 mifare系列卡片的crapto-1加密算法源码可以使用devkitARM进行编译。
  • Crypto-JS:JavaScript
    优质
    Crypto-JS是一款用于JavaScript环境的加密算法库,提供了丰富的加密功能,包括MD5、SHA1、AES等常用算法,适用于数据安全需求场景。 Crypto-js是一个纯JavaScript的加密算法类库,可以方便地在前端进行其所支持的加解密操作。
  • Crypto-JS 包(包含全部前端 JS
    优质
    Crypto-JS 是一个全面的前端 JavaScript 工具包,提供多种加密和解密算法,适用于各种安全需求场景。 这段文字描述了一个包含所有前台加密的JavaScript代码的资源集合,如AES.JS、MD5.js等,方便那些无法访问谷歌的人下载。
  • AES
    优质
    这段代码实现了AES(高级加密标准)算法的具体操作,可用于数据加密和解密。它是一种广泛使用的对称密码学技术。 使用verilog和C++实现的AES加密算法代码已通过测试,适合初学者参考。
  • RSA
    优质
    这段内容提供了一个关于RSA加密算法的具体实现方式,通过查看其源代码可以帮助学习者深入理解该算法的工作原理及应用。 RSA加密算法的源码详情可以参考相关文献或在线教程。
  • 3DES
    优质
    这段内容是关于实现3DES(三重数据加密标准)加密算法的源代码。该算法基于DES,通过三次迭代提供更强的数据保护能力。 3DES(或称为Triple DES)是三重数据加密算法(TDEA,Triple Data Encryption Algorithm)的通用名称,其实质是对每个数据块执行三次DES加密操作。最早的定义该算法的标准ANS X9.52在1998年发布时将其描述为“三重数据加密算法(TDEA)”,即为ANSI X3.92中定义的数据加密算法(DEA)的重复使用,完全没有提及术语3DES或DES”。FIPS PUB 46-3(1999)首次引入了“三重数据加密算法”和术语“Triple DES”及“DES”,该标准在描述时交替使用“数据加密算法”(DEA)与“DES”的概念,其中以定义开始:数据加密标准应包括以下内容的数据加密算法(DEA[4])以及根据ANSI X9.52所描述的三重数据加密算法(TDEA),NIST SP 800-67(在2004年和2008年发布)主要使用术语TDEA,但也提到“Triple DES (TDEA)”。ISO/IEC 18033-3(2005)同样使用了TDEA一词,并指出:TDEA通常被称为Triple DES(数据加密标准),但没有一个定义该算法的标准文件使用术语3DES”。 在具体操作上,3DES利用“密钥包”进行工作,包含三个独立的DES密钥K1、K2和K3,每个为56位(不包括奇偶校验)。其加密过程如下:密文 = E(K3)(D(K2)(E(K1)(明文)))。即以K1作为初始密钥执行一次DES加解密操作,之后使用K2进行第二次的解密操作,并最后用K3完成第三次的加密处理。而反之,在解码时则采用反向过程:原文 = D(K1)(E(K2)(D(K3)(密文)))。 每次运算都仅涉及64位的数据块,称为一块数据。无论是加解密过程中间步骤都是前后两步操作的逆过程,这增加了使用密钥选项二下的算法强度,并且在采用密钥选项三时与DES兼容。标准定义了三种不同的密钥选择方案: - 密钥选择一:三个独立的56位密钥。 - 密钥选择二:前两个是不同的,而第三个等于第一个(K3=K1)。 - 密钥选择三:所有三个都是相同的。 其中,选项一是最安全的选择,提供总共168个有效的秘密比特。相比之下,选项二是次优的方案,提供了2 x 56 = 112位的有效密钥长度,并且比单纯重复使用DES两次更加难以破解(因为它可以防御中间相遇攻击)。然而,在选择三中,由于三个密钥都是相同的,其安全性等同于标准的DES算法,仅提供56个独立比特作为加密强度。这个选项虽然与DES兼容但不再被国家统计科技协会(NIST)推荐使用,并且ISO/IEC 18033-3也不支持该方法。
  • kasumi
    优质
    《Kasumi加密算法的源代码》一书深入剖析了第三代移动通信系统中广泛应用的数据加密标准Kasumi的工作原理和实现细节,为信息安全专业人士提供了宝贵的参考。 kasumi 加密算法 源代码
  • DES
    优质
    本资源包含经典密码学中的DES(Data Encryption Standard)加密算法的详细源代码实现,适合深入研究和学习对称加密技术。 请提供用C语言编写的DES加密算法完整源代码,并将头文件改为C格式。
  • AES
    优质
    这段内容提供了关于AES(Advanced Encryption Standard)加密算法的具体实现方式和操作过程的源代码。通过阅读这些源代码,用户可以深入了解AES的工作原理,并应用于实际项目中。 AES(高级加密标准)是目前广泛使用的对称加密算法,并已成为国际标准,也被称之为Rijndael加密法。它在密码学领域扮演着极其重要的角色,用于保护数据的安全性和隐私性。其工作原理基于替换与置换操作,通过一系列的混淆和扩散过程使原始信息变得难以破解。 AES的核心概念包括以下几个方面: 1. **密钥扩展**:支持128、192及256位长度的不同密钥。在加密过程中,初始密钥会经过线性变换和非线性函数处理生成多轮使用的新密钥。 2. **状态矩阵**:AES中待加密的数据被组织成4x4的字节矩阵形式,称为“状态”矩阵。每个元素代表一个8位字节。 3. **四轮操作**:每一轮包括四个子过程——字节替换(SubBytes)、行移位(ShiftRows)、列混淆(MixColumns)和密钥加(AddRoundKey)。加密通常包含10、12或14轮,具体取决于所选的密钥长度。 - **字节替换**:每个字节通过预定义S盒进行非线性转换,以增加复杂度。 - **行移位**:状态矩阵中的每一行向左移动特定数量的位置来增强混淆效果。不同行有不同的偏移量。 - **列混淆**:利用线性变换混合各列数据,使得即使部分信息已知也难以推断其余内容。 - **密钥加**:将当前轮的密钥与状态矩阵进行按位异或操作以准备下一轮加密所需的数据。 4. **最后一轮特殊处理**:不同于其他阶段,在最后一步不执行列混淆步骤,简化解码过程中的计算需求。 在实现AES算法时需要特别注意以下几点: 1. **数据类型选择**:通常使用`uint8_t`表示字节,用`uint32_t`代表整数。这是因为AES主要在字节级别上进行操作。 2. **矩阵处理**:状态矩阵可以采用二维数组形式来存储和管理信息,并且需要注意边界条件及内存问题。 3. **密钥扩展函数编写**:根据初始密钥长度生成足够数量的轮密钥,供后续加密使用。 4. **实现加密解密功能**:分别创建`encrypt()`与`decrypt()`方法。这些方法遵循上述四步操作流程执行;但在解码时顺序相反。 5. **边界处理机制**:确保输入数据块大小为16字节的倍数,因为AES每次只能处理一个完整的128位区块。 6. **错误检测功能**:在加密和解密之前后进行合法性验证以防止可能的数据溢出或安全漏洞问题。 7. **性能优化措施**:可以考虑使用SIMD(单指令多数据)技术如SSE或者AVX来实现并行处理,从而提高算法运行速度。
  • SM-CRYPTO-JS:支持 SM JavaScript库
    优质
    SM-Crypto-JS是一款专为Web开发设计的JavaScript库,它提供了对国密(SM)系列加密算法的支持,便于开发者在前端实现安全的数据加密与解密功能。 sm-crypto-js 是一个用于 SM 加密算法的 JavaScript 库。 生成密钥对: ```javascript const sm2 = require(sm-crypto).sm2; let keypair = sm2.generateKeyPairHex(); publicKey = keypair.publicKey; // 公钥 privateKey = keypair.privateKey; // 私钥 // 通过私钥推导公钥 sm2.getPublicKeyFromPrivateKey(privateKey, mode); ``` mode 可以是 null、compress 或 mix。 加密解密: ```javascript const sm2 = require(sm-crypto).sm2; ```