本项目致力于研发一种新型基于悬挂系统的运动控制系统,旨在优化车辆行驶性能,增强驾驶体验和安全性。通过精确调节悬架系统,实现对车身姿态的有效管理,适应不同路况下的最佳驾驶状态。
在悬挂运动控制系统设计过程中,我们采用基于嵌入式操作系统的策略,并利用两块单片机协同作业来实现对悬挂数字对象的实时控制。系统通过两个步进电机配合完成平面内任意曲线路径的移动任务;同时依靠光电传感器与循迹算法支持高效准确地进行轨迹追踪工作。整个设备具有毫米级别的运动精度,从一个状态过渡到另一个状态的时间不超过一分钟。
在设计阶段,我们需全面考量控制系统、驱动电路、单片机结构、跟踪模块以及输入输出接口等多方面因素:
- 控制系统:为了确保最佳控制效果,闭环方式通常优于开环。然而,在本项目中获取物体位置反馈存在较大挑战性,因此选择采用步进电机的控制方案,并将整个系统的总体架构设定为开放式的。
- 驱动电路设计:在驱动方案上,我们有两个选项——利用专业的电机驱动芯片或自制分立式驱动线路。最终决定使用专业驱动芯片来降低功耗和提高系统效率。
- 单片机结构选择:单 MCU 和双 MCU 结构各有优劣,在本项目中选择了更灵活、便于升级的双 MCUs 架构,以更好地利用人力资源并开发出更加完善的功能性更强的产品。
- 循迹模块设计:在传感器类型的选择上,我们考虑了 CCD 摄像头和反射式红外两种方案。最终决定使用后者构建阵列来满足追踪需求。
- 输入输出接口设置:为增强用户体验与操作便捷度,本系统配置有240×128点阵LCD用于实时显示运动轨迹及相关参数,并配备了4×4键盘及PS/2鼠标以扩展其功能范围和提升人机交互体验。
通过上述方案的精心设计论证后,我们成功构建了一个能够满足悬挂运动控制系统需求的整体框架。该系统具备实时控制、高精度操作以及友好界面等特点,充分展现了我们在技术与工程实践中的创新能力和专业水平。