Advertisement

快速排序和冒泡排序算法已实现。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
快速排序和冒泡排序的源代码已完成,并采用C++语言进行了实现,确保代码中不存在任何错误,现向您提供使用。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本项目深入探讨并实现了两种经典的数组排序方法——快速排序和冒泡排序。通过对比分析这两种算法的效率与应用场景,旨在帮助理解基本的数据结构与算法原理。 快速排序和冒泡排序的实现代码采用C++语言编写,已确保无bug,欢迎使用!
  • 优质
    简介:本文探讨了两种经典的排序算法——冒泡排序和快速排序。通过比较它们的工作原理、效率及应用场景,旨在帮助读者理解各自优缺点并选择合适的算法解决实际问题。 在Java编程语言中,排序算法是至关重要的组成部分之一。本段落将简要分析冒泡排序与快速排序的实现思路,并提供相应的代码示例。 以下是常见几种排序方法的时间复杂度对比表: | 排序法 | 平均时间复杂度 | 最差情形 | 稳定性 | 额外空间需求 | 备注 | |-----------|-----------------|------------|---------|--------------------|------------------| | 冒泡排序 | O(n^2) | O(n^2) | 稳定 | O(1) | 数据量较小时效果较好 | | 选择排序 | O(n^2) | O(n^2) | 不稳定 | O(1) | 数据量较小时效果较好 | | 插入排序 | O(n^2) | O(n^2) | 稳定 | O(1) | 大部分已有序时效果好 | | 快速排序 | O(nlogn) | O(n^2) | 不稳定 | O(log n) | 数据量较大时表现较好 | | Shell 排序| O(n log n) | O(n^s),1
  • C++中插入、归并
    优质
    本文章深入探讨了四种常见的排序算法在C++中的具体实现方法,包括插入排序、冒泡排序、归并排序以及快速排序。通过详细的代码示例展示每种排序方式的工作原理与特点,适用于编程学习者和技术爱好者深入了解和掌握这些基础却重要的数据处理技巧。 插入排序、冒泡排序、归并排序和快速排序这四种排序方式的C++实现分别被编写成了独立的函数,在主函数中可以选择调用这些函数中的任意一个。初始化数组时使用了随机种子`srand((int)time(0))`,并且在宏定义中设置了数组大小。
  • 动态图解、堆
    优质
    本视频通过动态图解的方式详细介绍了三种常见的排序算法——冒泡排序、快速排序和堆排序的工作原理及实现过程。 在使用Qt编写C++代码时,可以实现多种排序算法,例如冒泡排序、快速排序和堆排序。
  • VC++中的多线程三种对比——归并
    优质
    本研究在VC++环境下探讨了冒泡排序、快速排序及归并排序三种经典排序算法的多线程实现方式,并对其性能进行了对比分析。 VC++多线程实现三种排序算法比较——冒泡排序、快速排序、归并排序,很有意思,可以下载看看!
  • 优质
    简介:冒泡排序是一种简单的比较交换排序算法,通过重复遍历待排序数组,对比相邻元素并交换顺序不当的元素,使每次未排序部分的最大值逐渐上浮至正确位置。 冒泡排序是一种简单的排序算法,通过循环遍历需要排序的元素,并依次比较相邻的两个元素。如果顺序错误,则交换这两个元素的位置,直到不再有元素被交换为止,此时排序完成。 对于n个待排数据而言,在最坏的情况下,我们需要进行n-1次完整的遍历才能确保所有数据都已正确排序。因此,在第k轮中需要执行n-k次比较操作。冒泡排序的总比较次数为:(n-1) + (n-2) + … + 1 = n*(n-1)/2,这表明其时间复杂度是O(n^2)。 以下是一个使用JavaScript实现冒泡排序的例子: ```javascript let dataList=[12,2,3,46,1,2,8]; let hasSort=[]; ``` 请注意,上述代码片段仅展示了数据初始化部分,并未包含完整的冒泡排序算法逻辑。
  • Java中双向的代码
    优质
    本篇文章提供了Java语言实现的经典冒泡排序与改进版的双向冒泡排序的具体代码示例,并详细解释了两种排序算法的工作原理及性能差异。 本段落主要介绍了Java实现冒泡排序与双向冒泡排序算法的代码示例。值得一提的是,所谓的双向冒泡排序并不比普通的冒泡排序效率更高,需要注意其时间复杂度。需要的朋友可以参考相关内容。
  • 直接插入、二分插入、Shell、选择
    优质
    本文介绍了七种经典内部排序算法(直接插入排序、二分插入排序、希尔排序、冒泡排序、快速排序、选择排序及堆排序)的基本原理,并提供了具体实现方法。 《数据结构(C语言版)》由严蔚敏与吴伟民编著,书中介绍了直接插入排序、折半插入排序、希尔排序、冒泡排序、快速排序、选择排序、堆排序的实现以及归并排序等内容,并使用C语言进行了详细实现。
  • 直接插入、选择(含详细及性能对比)
    优质
    本文探讨了四种基本排序算法——直接插入排序、快速排序、选择排序和冒泡排序,并提供了详细的算法实现代码及其性能分析。 数据结构中的直接插入排序、快速排序、选择排序和冒泡排序是常见的基本算法。下面将详细介绍这些算法的具体实现方法,并对它们的性能进行比较分析。 1. **直接插入排序**:该算法通过构建有序序列,对于未排序的数据,在已排好序的序列中从后向前扫描,找到相应位置并插入。 2. **快速排序**:是一种分治策略的应用。它选择一个“基准”元素,并将数组分为两个子数组,左边的所有元素都比基准小,右边所有元素都比基准大;然后递归地对这两部分进行相同的操作。 3. **选择排序**(通常指简单选择排序):该算法每次从未排序的部分选取最小的元素放到已排好序序列的末尾。每一次循环中找到未排序子数组中的最小值,将其与当前第一个位置交换。 4. **冒泡排序**:通过重复地遍历要排序的一组数,并比较每对相邻的数据项,如果它们的顺序错误就把它们交换过来。该算法的名字由这样的事实而得名:较小或者较大的元素会像气泡一样逐渐“浮”到顶端。 性能分析: - 在最理想的情况下(即输入数组已经完全有序),直接插入排序和冒泡排序的时间复杂度为O(n),其中n是待排序的记录个数;选择排序无论在最好还是最坏情况下,时间复杂度都是O(n^2)。 - 快速排序在平均情况下的性能是最好的,其时间复杂度接近于O(n log n),但在最差的情况下(如输入数组已经是完全有序或逆序),快速排序的时间复杂性退化为O(n^2)。 总结来说,每种算法都有自己的适用场景。例如,在数据量较小或者已经部分排好序的时候使用直接插入排序更加高效;对于大数据集的处理,则通常推荐采用快速排序以获得较好的性能表现。