Advertisement

MATLAB四阶龙格库塔法代码用于SEIR模型-Runge-Kutta-Method-for-SEIR-Model-:演示了如何在...

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目展示了使用MATLAB实现四阶龙格库塔方法求解SEIR传染病模型,通过模拟感染传播过程来预测疫情趋势。 这是用于在MatLab/Octave环境中使用四阶龙格库塔法求解SEIR模型的代码存储库,适用于麻疹疾病的流行病学建模。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLABSEIR-Runge-Kutta-Method-for-SEIR-Model-:...
    优质
    本项目展示了使用MATLAB实现四阶龙格库塔方法求解SEIR传染病模型,通过模拟感染传播过程来预测疫情趋势。 这是用于在MatLab/Octave环境中使用四阶龙格库塔法求解SEIR模型的代码存储库,适用于麻疹疾病的流行病学建模。
  • Matlab中的-(Runge-Kutta)方原理与实现
    优质
    本文介绍了MATLAB中用于求解常微分方程初值问题的经典四阶龙格-库塔方法的基本原理及其编程实现,旨在帮助读者理解和应用该算法解决实际数值计算问题。 ODE是专门用于求解微分方程的功能函数,包括ode23、ode45、ode23s等多种形式,并采用Runge-Kutta算法。其中,ode45表示使用四阶和五阶的Runge-Kutta单步法,截断误差为(Δx)³。它适用于非刚性的常微分方程问题,在求解数值解时通常是首选方法。如果长时间没有结果,则可能遇到的是刚性问题,此时应尝试改用ode23来解决。
  • 改进步长的Runge-Kutta__
    优质
    本文介绍了对传统Runge-Kutta方法进行改进的一种新策略,旨在提高步长效率,详细探讨了优化后的龙格-库塔算法在数值求解微分方程中的应用与优势。 程序采用库塔法求解微分方程,并提供了详细的步骤指导。用户只需设置步长并输入具体的微分方程即可运行程序。
  • SEIR.rar
    优质
    这段资料包含了基于SEIR(易感-暴露-感染-恢复)模型的代码资源。适用于流行病学研究和传染病传播模拟分析。 此为本人SEIR模型博客对应的代码。
  • C++飞弹.zip
    优质
    该压缩包包含用C++编写的四阶龙格库塔法飞行物(以飞弹为例)动态模拟程序源代码及文档。适合初学者学习和研究数值计算方法在导弹轨迹模拟中的应用。 仿真技术是一种通过建立模型来模拟现实世界或虚拟场景的方法,在工程、科研和教育等领域有着广泛应用。 仿真的核心在于计算机模拟,它利用程序与数据表示实际系统或过程,以便研究、分析或是培训。以下是对仿真技术的详细介绍: ### 仿真类型 - **时间分类**:分为实时仿真(同步于现实时间)和非实时仿真(加速或减速)。 - **形式分类**:包括物理仿真(使用实物模型)与数字仿真(完全基于计算机模拟)。 ### 仿真的步骤 1. 定义问题:明确仿真的目标及需求。 2. 建立模型:根据实际系统抽象出可计算的数学或逻辑模型。 3. 编程实现:将上述模型编程并验证其准确性。 4. 运行实验:进行多次模拟,收集所需数据。 5. 结果分析:对所获数据进行深入分析,并据此得出结论;同时校验和确认模型的有效性。 ### 应用领域 - **制造业**:用于产品设计、生产线优化等场景; - **医疗健康**:如手术训练及疾病传播模拟; - **教育培训**:提供虚拟实践环境,增强学习效果与操作技能; - **交通系统**:进行交通流量分析和事故预演; - **军事防务**:战术演练和士兵培训。 ### 常见的仿真软件 包括但不限于: - MATLAB Simulink(工程领域广泛使用的工具) - ANSYS(主要用于有限元分析等力学问题) - LabVIEW(用于数据采集与仪器控制)
  • MATLAB中的实现
    优质
    本篇文章详细介绍了如何使用MATLAB编程语言来实施四阶龙格-库塔(Runge-Kutta)方法,这是一种广泛应用于求解常微分方程初值问题的强大数值分析技术。文中通过具体步骤和示例代码阐述了该算法的实现过程,并探讨其在不同应用场景中的适用性和优势。 用MATLAB编写的四阶龙格库塔算法可以直接调用状态微分方程,但需要满足特定格式要求,并且可以调整算法的步长。
  • MATLABSEIR仿真及操作视频
    优质
    本视频详细介绍了如何使用MATLAB进行SEIR(易感-暴露-感染-恢复)流行病学模型的建模与仿真,并提供了实用的操作指南和完整代码展示。 基于MATLAB的SEIR模型仿真及代码操作演示视频运行注意事项:请使用matlab2021a或者更高版本进行测试,并且仅需运行文件夹内的Runme.m文件,不要直接运行子函数文件。在运行过程中,请确保Matlab左侧当前文件夹窗口显示的是工程所在路径。具体的操作步骤可以参考提供的操作录像视频,跟随演示逐步完成相关设置和操作。
  • Python中应Runge-Kutta
    优质
    简介:本文介绍了在Python编程语言中实现和应用的经典四阶Runge-Kutta数值积分方法,适用于求解各种微分方程问题。 如何用Python实现四阶Runge-Kutta方法来求解n维常微分方程?
  • SEIRMatlab
    优质
    本代码为基于SEIR模型(易感-暴露-感染-恢复)的流行病传播仿真程序,使用MATLAB编写。通过调整参数可模拟不同条件下的疫情发展情况。 只有代码,请将这里的内容仅限于代码。
  • 的FORTRAN程序实现.rar_K._Runge-Kutta_fortran__
    优质
    本资源提供四阶龙格-库塔方法在FORTRAN语言中的程序实现,适用于数值分析和科学计算课程学习。包含K. Runge-Kutta法的详细代码及注释说明。 Runge-Kutta方法是一种用于求解形如y=f(t,y)的常微分方程的经典四阶算法。可以用Fortran语言编写实现该方法的程序代码。