Advertisement

基于单片机的双积分式A/D电路设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目专注于开发一种基于单片机控制的高精度双积分式A/D转换器。该设计方案通过优化积分时间和参考电压实现对模拟信号精确数字化,适用于多种测量控制系统中。 本段落介绍了一种基于单片机的高精度、双积分型A/D转换电路,该电路具有体积小、成本低、性价比高、结构简单、调试容易以及工作可靠等特点,在实际应用中表现出很好的价值。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • A/D
    优质
    本项目专注于开发一种基于单片机控制的高精度双积分式A/D转换器。该设计方案通过优化积分时间和参考电压实现对模拟信号精确数字化,适用于多种测量控制系统中。 本段落介绍了一种基于单片机的高精度、双积分型A/D转换电路,该电路具有体积小、成本低、性价比高、结构简单、调试容易以及工作可靠等特点,在实际应用中表现出很好的价值。
  • A/D
    优质
    本项目专注于开发一种基于单片机控制的高精度双积分式模拟/数字转换器(A/D)电路。通过精确地测量电压信号并将其转化为对应的数字值,该系统适用于需要高性能、低成本和易于实现数据采集的应用场景中。 本段落介绍了一种基于单片机的高精度、双积分型A/D转换电路,该电路具有体积小、成本低、性价比高、结构简单、调试容易及工作可靠等特点,在实际应用中表现出很好的价值。
  • 模拟子技术课程MultisimA/D转换仿真
    优质
    本课程设计采用Multisim软件进行双积分型A/D转换电路的仿真分析,旨在通过实践加深学生对模拟电子技术和数据转换原理的理解。 本电路为作者原创设计。通过使用时序逻辑电路、运算放大器以及晶体管等分立器件搭建而成,对输入采样电压和基准电压进行两次积分处理,将模拟信号转换成数字量,并通过数码管显示电压值。
  • 础元器件A/D转换器
    优质
    本项目专注于双积分型A/D转换器的设计与开发,采用基础元器件实现高精度、低功耗的数据采集系统,适用于工业控制和医疗设备。 双积分型A/D转换器的设计——如何使用51单片机及基本元器件设计一个双积分型A/D转换器?本资源提供了一个可供参考的方案。
  • STC89C52RCD/AA/D转换C程序
    优质
    本项目介绍了一种基于STC89C52RC单片机实现数字模拟(D/A)与模拟数字(A/D)转换功能的C语言编程方法,适用于电子测量及控制系统。 本段落介绍了一段基于STC89C52RC单片机的DA/AD转换C程序。该程序使用了I2C通信协议以及数码管显示功能。P0口用于控制数码管的段接口,而P2口的6、7位则用于数码管的段选和位选操作。此外,在程序中定义了一个数据接收缓冲区以实现数据接收,并且还包含一个共阴极数码管从0到9以及消隐编码的相关表格。此程序能够完成数字转换与显示的功能。
  • VHDLA/D采样控制
    优质
    本项目旨在利用VHDL语言进行A/D采样控制电路的设计与实现,优化信号处理效率和精度,适用于多种电子测量系统。 AD转换采样频率的速度取决于所使用的转换电路类型,因此不同类型的AD转换器具有不同的采样频率;而AD分辨率的高低则完全由AD转换器的位数决定。例如,一个12位的转换器在模拟信号输入范围从0V到满刻度时,可以输出数字信号值为0至4095。在AD采样的过程中,采样频率指的是每秒钟进行采样的次数,并以赫兹(Hz)表示;而分辨率则决定了能够捕捉到的最小电压变化量。例如,在基准电压为1伏特的情况下,若采用8位的转换器,则可以分辨出的小于或等于1/256伏特的变化。
  • PWM技术A/D转换
    优质
    本项目专注于利用脉宽调制(PWM)技术进行模拟信号到数字信号(A/D)的高效转换。通过优化PWM参数和改进电路结构,旨在提高转换精度及速度,适用于各种高精度测量场合。 本段落提出了一种采用PWM技术的高性能模数转换器的设计方法。该设计利用微控制器(MCU)内部的定时器,并结合改进的逐次逼近算法进行对分试探,仅使用普通元器件即可实现高分辨率A/D转换器的设计,以测量模拟电压。实验结果表明,这种设计能够达到较高的精度和分辨率,电路简单可靠、成本低且所需传输信号线少,便于远传或隔离操作,并具有较强的抗干扰能力。因此,该设计方案具备良好的应用价值。
  • STC12C5A60S2A/D转换
    优质
    本文章介绍如何使用STC12C5A60S2单片机进行A/D(模拟/数字)转换,并探讨其在各种应用中的实现方法和技巧。 文章简要介绍了单片机的A/D转换过程。这一部分主要阐述了如何将模拟信号转化为数字信号,并且讨论了一些常见的A/D转换技术及其在单片机中的应用。通过这种方式,单片机能够处理来自各种传感器的数据并进行进一步分析和控制操作。
  • 优质
    本项目旨在介绍如何使用单片机来控制继电器的工作状态。通过具体硬件连接和编程实例,展示了继电器在自动化系统中的应用。 手上有一个HFD23的5V继电器,查看其参数可以发现:线圈电阻为125Ω;线圈功率为200mW;继电器额定电压为5V。由此可计算出吸合电流有两种方式:I=0.2W/5V=40mA 或 I=5V/125Ω=40mA。 接下来是三极管的参数说明: - PCM(集电极最大允许耗散功率) - ICM(集电极最大允许电流) - BV(CEO)(基极开路时,集电极与发射极间的反向击穿电压) - fT(特征频率) - hFE(放大倍数) 为了保证电路的稳定性,要求: 1. 三极管的PCM至少为继电器额定功率的两倍,即PCM≥0.4W; 2. 三极管的ICM电流至少是继电器吸合电流的两倍,即ICM≥80mA; 3. 三极管的BV耐压值必须不小于继电器额定电压的两倍,即BV≥10V。 根据上述条件可以确认这四款三极管均符合需求。考虑到稳定性问题,我们选择NPN型S8050作为控制电路中的三极管。 在实际应用中,上图所示的电路可能存在一些潜在的问题:继电器线圈是一种感性元件,在电流变化时会产生自感电动势。根据法拉第定律,这种电动势与通过线圈的电流变化率(即磁通量的变化率)成正比关系。因此当电源断开瞬间,由于电流急剧下降导致很大的电流变化率,继电器线圈会生成高电压峰值。
  • 优质
    本项目旨在介绍如何利用单片机实现对继电器的有效控制。通过详细的设计与实践,展示继电器电路的基本原理及其在自动化控制系统中的应用价值。 手上有一个HFD23的5V继电器,下面看一下其参数。 可以看出: 线圈电阻为125Ω; 线圈功率为200mW; 继电器额定电压为5V; 由此可以计算出继电器吸合电流,有两种方式: I = 0.2 mW / 5 V = 40 mA I = 5 V / 125 Ω = 40 mA 下面看三极管的参数: 参数解释如下: PCM是集电极允许耗散功率; ICM是集电极允许电流; BV(CEO) 是三极管基极开路时,集电极-发射极反向击穿电压; fT 是特征频率; hFE 是放大倍数; 为了保证电路的稳定性,需要满足一定的要求。