Advertisement

AES解密的硬件实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《AES解密的硬件实现》一文探讨了高级加密标准(AES)算法在硬件平台上的高效解密技术,分析并设计了适用于不同应用场景的AES解密方案。 采用Verilog硬件描述语言实现了AES解密算法,这对密码算法的学习使用以及安全芯片的设计具有重要的帮助。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • AES
    优质
    《AES解密的硬件实现》一文探讨了高级加密标准(AES)算法在硬件平台上的高效解密技术,分析并设计了适用于不同应用场景的AES解密方案。 采用Verilog硬件描述语言实现了AES解密算法,这对密码算法的学习使用以及安全芯片的设计具有重要的帮助。
  • JavaAES
    优质
    本项目展示了如何使用Java语言对文件进行AES算法加密和解密操作,提供了一个实用的安全数据处理方案。 这段文字描述了生成密钥、加密文件以及使用密钥k解密文件的过程。
  • STM32F103AES程序.zip_STM32 AES
    优质
    本资源包含STM32F103系列微控制器上实现硬件AES加密功能的完整程序及配置方法,适用于数据安全传输与存储需求。 STM32的AES加解密例程基于官方提供的加密库实现。该例程展示了如何在STM32微控制器上使用硬件加速器进行数据的安全处理,包括加密和解密操作。通过利用STMicroelectronics为开发者社区提供的资源和支持,可以有效地集成高级加密标准(AES)到各种安全应用中。
  • AES算法探究与应用
    优质
    本文深入探讨了AES(高级加密标准)算法的工作原理及其在硬件平台上的高效实现方法,旨在为信息安全领域提供更佳的数据保护方案。 毕业设计使用ISE14.7软件,通过Verilog语言实现了AES加密解密算法的FPGA实现,并完成了顶层文件和testbench文件的编写。该设计已经完成并且无需进行任何修改。
  • Java 使用 AES
    优质
    本项目展示了如何使用 Java 语言和AES算法进行文件的高效加密与安全解密,确保数据传输和存储的安全性。 Java 基于AES实现对文件的加密解密。
  • MATLAB中AES
    优质
    本项目旨在展示如何使用MATLAB语言进行高级加密标准(AES)的加密和解密操作。通过该项目,学习者可以理解AES算法的工作原理,并掌握其在通信安全领域的应用方法。 版本:MATLAB 2019a 领域:基础教程 内容:使用 MATLAB 实现 AES 加密与解密算法。 适合人群:本科、硕士等教研学习使用。
  • 基于QtAES
    优质
    本项目旨在利用Qt框架高效实现AES加密与解密功能,适用于需要数据安全保护的应用场景。代码简洁、易于集成。 支持密码长度为AES_128/AES_192/AES_256,支持工作模式ECB/CBC,支持填充模式ZERO/PKCS7/ISO。已通过测试,并附有使用方法。
  • Python中AES
    优质
    本文章介绍了如何在Python编程语言环境中使用AES算法进行数据的加密与解密过程,并提供了具体的代码示例。适合对信息安全感兴趣的初学者参考学习。 在密码学领域内,高级加密标准(Advanced Encryption Standard, AES)又被称为Rijndael加密法,是美国联邦政府采用的一种区块加密方法,旨在替代旧有的DES标准。该技术自发布以来已被广泛分析并应用于全球各地。经过长达五年的甄选过程后,2001年11月26日,AES由美国国家标准与技术研究院(NIST)通过FIPS PUB 197正式公布,并在次年的5月26日正式生效。到了2006年,AES已经成为对称密钥加密中最受欢迎的算法之一。 AES共有五种工作模式:ECB、CBC、CTR、CFB 和 OFB。其中,ECB(电子密码本)是其中之一。
  • Python中AES
    优质
    本文介绍了如何使用Python语言实现AES加密和解密的方法,包括所需库的安装、代码示例及详细步骤说明。 AES加解密的Python实现涉及使用Python编程语言来加密和解密数据。这通常通过利用现有的库如`pycryptodome`或`cryptography`来完成。这些库提供了方便的功能,使得开发者能够轻松地实施AES算法的不同模式(例如CBC、CTR等)。在进行AES加解密操作时,确保正确选择密钥长度,并妥善管理加密和解密所需的初始化向量是非常重要的。此外,在实际应用中需注意安全存储密码和其他敏感信息以防止潜在的安全风险。
  • Python中AES
    优质
    本文章介绍了如何使用Python语言来实现AES加密和解密的具体步骤和技术细节。 ### Python 实现 AES 加密解密 #### 一、AES 加密解密概述 AES (Advanced Encryption Standard) 是一种广泛使用的对称加密算法标准。它采用分组密码设计,每轮处理固定大小的数据块,通常为128比特。本段落主要介绍如何使用Python实现AES的基本功能——即对任意长度不超过16个字符的字符串进行加密解密,并通过实际运行示例验证其正确性。 #### 二、AES 加密解密原理 AES 加密算法包括以下核心步骤: 1. **字节代换(Byte Substitution)**:使用S盒对每个字节进行非线性替换。 2. **行移位(Shift Rows)**:按特定规则对矩阵中的行进行移位。 3. **列混合(Mix Columns)**:使用特定矩阵对每列进行线性变换。 4. **轮密钥加(Round Key Addition)**:当前状态与轮密钥进行异或操作。 #### 三、具体实现 ##### 1. 字节代换 - **函数定义**:`define_byte_substitution()`用于执行字节代换。 - **转换过程**:首先使用 `hex_to_int_number()` 将十六进制数转换为十进制数,然后根据S盒进行字节代换。这里需要注意的是 S 盒的构建方式以及如何将十进制数映射到 S 盒中的特定位置。 - **逆字节代换**:使用逆 S 盒来恢复原始数据。 ```python # 定义 S 盒 def define_S_box(): # 示例S盒定义 s_box = [ [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76], # 其他行省略... ] return s_box # 定义逆 S 盒 def define_inv_S_box(): inv_s_box = [ # 逆S盒定义 ] return inv_s_box def byte_substitution(state, s_box): # 实现字节代换 pass def inv_byte_substitution(state, inv_s_box): # 实现逆字节代换 pass ``` ##### 2. 行移位 - **函数定义**:`define_line_shift()` 和 `define_line_inverse_shift()` 分别用于加密和解密时的行移位操作。 - **实现思路**:按照 AES 规则对状态矩阵中的行进行左移或右移。 ```python def line_shift(state): # 实现行移位 pass def line_inverse_shift(state): # 实现行逆移位 pass ``` ##### 3. 列混合 - **输入输出**:该步骤的输入为十进制矩阵,输出为十六进制矩阵。 - **实现细节**:通过定义 `define_column_rotation()` 来辅助列混合操作,利用 `get_2()` 实现与2相乘的结果,以及 `XOR()` 函数来完成异或操作。 ```python def column_mix(state): # 实现列混合 pass def inv_column_mix(state): # 实现逆列混合 pass ``` ##### 4. 轮密钥加 - **密钥扩展**:使用 `get_extend_key()` 函数来扩展密钥。 - **实现细节**:通过 `get_round_key_plus()` 函数实现轮密钥加的操作,即进行异或操作。 ```python def get_extend_key(key): # 扩展密钥 pass def get_round_key_plus(state, key): # 实现轮密钥加 pass ``` #### 四、加密解密流程 - **加密过程**:包括10轮迭代,其中前9轮包含所有四个步骤,最后一轮省略列混合步骤。 - **解密过程**:与加密过程相反,每一步都要逆向执行。 #### 五、代码实现及调试 在实现过程中可能会遇到一些小问题,如变量管理不善导致的逻辑错误等。例如,控制轮密钥使用的变量如果放置不当可能导致加密解密失败。因此,在调试过程中需要仔细检查每一步骤,并确保变量的正确使用。 #### 六、总结 通过上述步骤可以使用Python成功实现AES的加密解密功能。虽然代码可能存在一些不足之处,但总体上能够满足对简单字符串进行加密的需求。未来还可以进一步优化代码结构,提高其可读性和可维护性。