Advertisement

STM32的串口1、串口2、串口3和串口4通信程序已打包为.zip文件。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该压缩包内收录了STM32微控制器的四个串口的程序源代码,这些代码均经过严格测试,确认能够正常运行,涵盖了串口1、串口2、串口3以及串口4等接口。 诚挚地邀请您前来下载使用,如果您在使用过程中遇到任何疑问或需要进一步的协助,欢迎随时提出。 我们期待着与您进行交流和探讨!

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM3212实验
    优质
    本实验详细介绍如何在STM32微控制器上配置和使用串口1与串口2实现数据传输。通过具体步骤教会读者设置UART参数及编写相关代码,以完成两串口之间的通信。 STM32F10X的主函数需要配置串口一(包括初始化、中断配置和接收中断处理函数),并通过串口二发送数据,在串口一上进行打印输出。
  • STM3212实验
    优质
    本实验详细介绍了如何在STM32微控制器上实现串口1和串口2之间的数据通信,包括硬件连接、代码编写及调试方法。 对于STM32F10X的主函数来说,需要配置串口一。这包括初始化、中断配置以及实现接收数据的中断处理函数。此外,在这个过程中还需要设置串口二用于发送数据,并通过串口一进行打印输出。
  • STC12C5A60S2 12测试
    优质
    本项目提供了一个用于STC12C5A60S2单片机的测试程序,旨在验证该芯片上串口1和串口2的功能及通信性能。 STC12C5A60S2单片机的串口1到串口2程序实验成功,一切正常。
  • STM32F103C8T6 HAL库实现13DMA
    优质
    本文介绍了如何使用STM32F103C8T6微控制器及其HAL库来配置和实现串口1与串口3之间的DMA数据传输,提高通信效率。 网上关于HAL库DMA的示例大多比较简单,并且容易出现丢包问题,实用性较低。因此我编写了一个更实用的例子:这个Demo将串口1或串口3通过DMA接收到的数据再发送回相应的串口进行回显,也可以选择直接返回到各自的串口中。 定义了两个宏来配置功能: - `#define DEBUG_FLAG 1` 控制是否启用串口1的打印。 - `#define UART_BANDRATE 115200` 设置串口波特率。
  • PL UART_ZEDBOARD _Vivado _ZYNQ7000 PL_ZYNQ
    优质
    本项目详细介绍了在Zedboard开发板上利用Xilinx Vivado工具,实现基于Zynq7000系列PL端的UART串口通信技术。 在Zedboard上实现串口通信,可以利用Zynq7000的PL部分来完成一个简单的UART接口设计。
  • STM32
    优质
    本程序为基于STM32微控制器的串行通讯实现方案,包含初始化配置、数据发送与接收功能,适用于嵌入式系统中的设备间通信。 STM32串口收发经典程序代码简洁明了,具有良好的可更改性和移植性,方便进行开发工作。
  • 基于STM32F405RGT61(PA9, PA10)2(PA2, PA3)测试
    优质
    本项目设计了一种使用STM32F405RGT6微控制器,通过其串行接口1(PA9, PA10)和串行接口2(PA2, PA3)进行数据交换的测试程序。此方案适用于评估不同USART端口间的通信效率与稳定性。 STM32F4005RGT6串口1(PA9, PA10)及串口2 (PA2, PA3)的通信测试程序如下: ```c void uart_init(void) { USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; // 串口1初始化 /* 启用GPIO时钟 */ RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); /* 启用USART时钟 */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); /* 将PA9和PA10引脚配置为USART功能 */ GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_USART1); GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_USART1); // 配置GPIO GPIO_InitStructure.GPIO_Mode = GPIO_MODE_AF; GPIO_InitStructure.GPIO_Speed = GPIO_SPEED_HIGH; GPIO_InitStructure.GPIO_OType = GPIO_OTYPE_PP; // 推挽输出模式 GPIO_InitStructure.GPIO_PuPd = GPIO_NOPULL; // 不使用上下拉电阻 /* 配置PA9为USART_TX */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_Init(GPIOA, &GPIO_InitStructure); /* 配置PA10为USART_RX */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_Init(GPIOA, &GPIO_InitStructure); } ``` 注意:上述代码仅展示了串口1的初始化部分,对于串口2(PA2、PA3)同样需要进行类似的配置步骤。
  • STM32
    优质
    简介:STM32 串口通信涉及使用STM32微控制器进行数据传输的技术,通过UART、USART或USB接口实现设备间的异步通信。 此模板亲测有效,适合初级开发调试使用。如有需要其他例程,请回复。资源共享。
  • STM32F103RCT6 STM32F405RGT6 在 CubeMX 中映射比较:31
    优质
    本文对比了在STM32CubeMX工具中,针对STM32F103RCT6和STM32F405RGT6两个微控制器型号,将USART3重映射至USART1的配置差异与设置流程。 STM32系列微控制器在嵌入式系统设计中广泛应用,其中STM32F103RCT6和STM32F405RGT6是常见的型号。它们都是基于ARM Cortex-M3内核的32位微控制器,并提供多种外设接口,包括串行通信接口(USART或UART)。在这篇文章里,我们将深入探讨如何使用STM32CubeMX配置这两个型号的串口映射。 对于STM32F103RCT6,我们关注的是串口3(USART3)的映射。默认情况下,串口3的TX和RX引脚通常被分配到不同的GPIO端口中:TX在PC10上,而RX则位于PC11。这意味着你需要使用STM32CubeMX配置这些GPIO端口以支持串口通信功能。 对于STM32F405RGT6,我们需要关注的是串口1(USART1)的映射情况。根据描述,串口1的TX引脚被设定在PB6上,而RX则位于PB7。同样地,在配置过程中需要确保这些GPIO端口正确设置以支持所需的通信功能。 进行串口配置时,请注意波特率、数据位数、停止位和奇偶校验等基本参数的选择。使用STM32CubeMX进行串口配置的具体步骤如下: 1. 打开STM32CubeMX并选择对应的微控制器型号(例如,STM32F103RCT6或STM32F405RGT6)。 2. 进入外设配置界面,并打开“USART”模块以进行进一步的设置。 3. 选定需要使用的串口(如USART3或USART1),并根据实际需求设定相应的波特率及其他通信参数。 4. 配置每个串口所对应的GPIO引脚。例如,对于STM32F103RCT6来说,将USART3的TX配置为PC10而RX设置为PC11;而对于STM32F405RGT6,则需确保USART1的TX连接到PB6且RX位于PB7。 5. 完成其他系统时钟和电源管理的相关设定后进行确认操作。 6. 最终生成代码,此时STM32CubeMX将自动生成初始化所需的代码片段,可以直接集成至你的项目中。 在实际开发过程中,你可能还需要编写控制串口发送与接收的用户代码。例如可以使用HAL库中的函数来实现数据的收发功能(如`HAL_UART_Transmit()`和`HAL_UART_Receive()`)以简化编程任务。此外,“STM32F103RCT6_LED”这个文件名提示可能包含有关该型号微控制器LED控制方面的示例代码或项目,这可以作为学习如何操作GPIO端口的参考材料之一。 总之,通过使用STM32CubeMX配置串口映射的过程简单直观,并有助于开发者高效地利用这些外设实现嵌入式系统的通信需求。理解并掌握相关知识将帮助你更好地设计和优化基于STM32微控制器的应用程序中的串行通讯系统。
  • 资料.rar_屏_迪
    优质
    本资源包提供迪文屏通过串口进行数据传输的相关文档和示例代码,适用于开发者快速掌握串口屏的应用及编程技巧。 基于STM32单片机与迪文屏的串口通信代码能够正常实现数据的发送和接收。