Advertisement

深度学习中的不确定性评估及其稳健性研究。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
深度学习模型在处理分布外数据进行预测时,常常展现出不足之处。这些模型倾向于生成高度自信的预测结果,而这种表现对于实际应用场景而言则存在着显著的挑战,例如在医疗诊断、自动驾驶以及自然语言处理等领域,都可能带来潜在的安全风险。尤其当训练数据与模型预测所依据的数据之间存在明显的偏差时,这些应用便面临着相当程度的隐患。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 和鲁棒分析
    优质
    本研究探讨了深度学习模型在面对不确定性时的表现及改进方法,旨在增强其预测准确度和稳定性,提高模型对异常数据的处理能力。 深度学习模型在处理分布外预测时表现不佳:它们常常做出高置信度的预测,在医疗保健、自动驾驶汽车和自然语言系统等领域应用时可能会引发问题。此外,在训练数据与实际使用的数据存在差异的情况下,这些应用面临的安全隐患也相当大。
  • 量化:技术、应用挑战》
    优质
    本文探讨了深度学习中不确定性量化的关键技术、实际应用及其面临的挑战,旨在提高模型预测的可靠性和鲁棒性。 在优化和决策过程中,不确定性量化(UQ)对于减少不确定性至关重要,并且可以应用于科学与工程中的多种实际问题。
  • 综述
    优质
    《深度学习的综述性研究》概述了深度学习领域的主要进展和挑战,包括模型架构、优化算法及应用实例,旨在为研究人员提供全面的视角和深入的理解。 深度学习是一种包含多层隐藏层的神经网络模型,适用于声音识别、图像识别等多个领域。
  • 可靠与挑战:图像分割问题
    优质
    本文探讨了在医学图像分割领域中不确定性估计的重要性及其面临的挑战,并分析了提高可靠性的方法。 评估医学图像分割的不确定性估计的可靠性和挑战是MICCAI 2019的一项贡献。安装所需的Python软件包(我们使用的是Python版本3.6): ``` pip install -r requirements.txt ``` 获取BraTS 2018和ISIC 2017数据集,然后根据分步指导在`./rechun/directories.py`文件中设置数据集路径。运行训练脚本之前,请确保已经设置了正确的路径。 准备完成后,执行以下命令以运行准备脚本: ``` ./scripts ``` 之后运行训练脚本(位于`./bin-dl/train*`目录下)。对于辅助功能的使用,需要在配置文件中设置模型目录路径和其他相关参数。
  • 关于多维微分方程均值
    优质
    本研究聚焦于探讨多维不确定微分方程系统的均值稳定性问题,分析并提出新的评估准则与方法,以深化对复杂动态系统稳定性的理解。 多维不确定微分方程均值的稳定性分析
  • 长大跨桥梁康监测分析方法
    优质
    本研究聚焦于长大跨桥梁健康监测中的不确定性因素,探讨并提出了有效的分析方法,以提升桥梁安全评估与维护水平。 长大跨桥梁健康监测是现代土木工程领域的一项关键技术,旨在通过多种方法对桥梁结构的实时健康状况进行连续监控,确保其安全性和耐久性。在这一过程中,不确定性研究已成为保证监测结果准确性的关键环节。本段落作者朱峰岐与张建分析了当前桥梁健康诊断技术的应用现状,并提出了一套系统的标准化方法,同时探讨了各阶段可能遇到的不确定因素及其处理策略。 结构识别是长大跨桥梁健康监测中的核心方法之一,它通过输入输出测试数据来确定结构参数,在许多大型建筑和长跨桥梁的安全评估中已广泛应用。然而,在实际应用中,振动测试、数据处理、结构建模等环节往往会受到诸如荷载激励与环境条件变化、测量噪音及误差以及有限元模拟中的误差等多种不确定因素的影响。 在进行环境振动测试时,风荷载或车辆荷载等外部力量会作为主要的负载源影响到结果;同时湿度和温度的变化也会影响数据准确性。此外,在实际操作中不可避免地会出现由硬件问题(如传感器、导线及接收系统)或是试验设计不当所导致的数据误差。 针对这些不确定性因素,本段落提出了一系列策略来降低其对测试的影响:首先通过优化现场测试的设计与实施过程减少外部环境变化的干扰;其次采用峰值挑选、PolyMax方法和复模态指示函数(CMIF)三种独立的数据后处理技术提高数据可靠性和准确性,并将试验结果与三维有限元分析模拟对比进一步提升结构识别精度。在模型建立及模拟阶段,通过校准和更新有限元模型来确保其准确反映桥梁动态特性。 文章还以一座大跨悬索桥的实际案例展示了上述方法的应用过程:从现场测试到数据分析再到有限元分析的整个流程,并详细说明了如何对模型进行修正以更精确地评估桥梁健康状况。长大跨桥梁健康监测中的不确定性研究涉及结构工程、土木工程以及信号处理等多个学科领域,通过引入科学严谨的方法可以提高技术标准化程度和结果准确性,为保障桥梁长期安全运营提供坚实的技术支持。
  • 有限理条件下博弈均衡
    优质
    本文探讨了在有限理性的假设下,参与人在面对不确定性时所采取的战略选择及其形成的博弈均衡,并分析了这些均衡的稳定性。通过引入认知限制和信息不完备性,研究如何影响动态系统中的策略调整与演化过程,进而评估不同条件下均衡解的实际应用价值及经济意义。 在现代经济学与博弈论研究领域,“理性经济人”假定认为个体是完全理性的,并且他们在决策过程中总是追求自身利益的最大化。然而,在实际生活中,人类的决策并不总能符合这一假设,因为人们的行为受到心理因素和认知能力限制的影响。有限理性理论由经济学家赫伯特·西蒙提出并得到进一步发展,该理论强调了个体在面对复杂问题时的认知局限性。 为了更好地理解有限理性的博弈行为,学者们构建了一些模型来探讨这种现象。例如,在2001年,Anderlini和Canning提出了一个描述有限理性抽象框架的模型,并为后续研究提供了基础。之后,Yu等人在此基础上进行扩展应用至多目标决策、最优化问题等不同领域,并进一步分析了这些模型在结构稳定性和鲁棒性方面的表现。 现实世界中总是充满不确定性因素的影响,包括信息不完全或外部环境和气候条件的变化等因素。因此,在建立博弈理论时必须考虑不确定参数的存在及其影响。早期学者Zhukovskii研究了一类非合作博弈问题中的Nash均衡情况,并提出当参与者了解不确定参数变化范围时如何进行相应的决策调整。 本段落作者旨在探讨有限理性对不确定性博弈模型稳定性的影响,通过构建具有有限理性的不确定性博弈模型来分析其稳定性和鲁棒性。文中首先定义了一个包含参数空间、行为空间和可行映射等元素的抽象框架,并引入了衡量参与者与完全理性差距的“理性函数”。接着作者提出了广义不确定博弈的概念并研究了这类问题中的稳定性。 在本段落中,“有限理性”、“不确定性”、“Nash均衡”以及“稳定性”是核心关键词。它们反映了博弈论领域内关注的核心概念,而本项工作则试图通过结合现实世界中存在的两大因素——即不确定性与有限理性的双重作用来探究博弈均衡的稳定特性。这项研究不仅具有理论价值,在实际应用中也十分关键,特别是在经济政策制定、企业战略规划及市场预测等领域。 通过对这些不确定性和有限理性条件下的博弈模型进行深入分析,我们能够更好地理解个体如何在复杂多变环境中做出决策,并且评估这样的决策对整个系统的稳定性和效率有何种影响。这为指导实际操作提供了重要的理论基础和实践依据。
  • 关于计和视觉里程计论文标准
    优质
    本研究探讨了深度学习技术在深度估计与视觉里程计领域中的应用,并对其评估标准进行了深入分析。通过对比不同模型的表现,提出更有效的性能评价体系。 在基于深度学习的深度估计或视觉里程计(VO)研究领域中,常用的性能评估指标包括相对误差(rel)、均方根误差(rmse)以及对数10误差(log10)。这些度量标准能够帮助研究人员客观地评价算法的效果和准确性。
  • 图像分割方法综述.pdf
    优质
    本文为一篇关于图像分割方法及其性能评估的研究综述。文章全面回顾了现有的图像分割技术,并对其评估标准进行了详细的探讨和分析。 图像分割是图像处理与计算机视觉中的一个基本问题,也是图像分析的关键步骤之一。本段落综述了近年来常用的图像分割方法,并对其进行了介绍。
  • DC_Power_flow.rar_光伏_描述_光伏
    优质
    本资源为电力系统分析中的直流潮流程序,专注于研究并描述光伏发电系统的不确定性影响。 在电力系统领域内,光伏电站的功率输出受到多种因素的影响,包括天气条件、季节变化以及设备老化等,导致其输出功率存在显著不确定性。“DC_Power_flow.rar”压缩包文件结合标题与描述来看,显然是针对光伏电站直流侧功率流不确定性的分析。该文件采用奇诺多面体方法来描述这种不确定性。 奇诺多面体是一种数学工具,在概率分析和优化问题中广泛应用,特别是在处理具有多个变量的不确定性场景时更为常见。在光伏发电站的功率预测过程中,它可以帮助构建一个涵盖所有可能输出变化范围的不确定空间。每个平面代表一种潜在的功率输出情况,通过这种方法可以更全面地理解和评估光伏电站的功率波动。 文件“DC_Power_flow.m”很可能是一个MATLAB脚本,用于模拟和分析光伏电站直流侧的电力流动状况。该脚本中通常包含以下关键步骤: 1. **数据输入**:包括关于光伏发电站参数的历史记录(如面板效率、日照强度及温度),以及潜在不确定因素的数据(比如云层遮挡或尘埃覆盖)。 2. **不确定性建模**:利用奇诺多面体方法建立模型,通过定义各种影响因子的边界条件生成一个表示所有可能功率输出组合的多维空间。 3. **电力流计算**:根据每种潜在的功率输出情况来计算直流侧的电能流动。这涉及到光伏阵列电流和电压的关系,并且通常基于I-V曲线和P-V曲线进行分析。 4. **统计分析**:对上述电力流结果进行评估,包括平均值、标准差及概率分布等指标,以量化不确定性对于整个电网的影响程度。 5. **可视化展示**:可能包含功率输出的多维图形表示,帮助用户直观理解各种不确定性的范围和影响。 6. **决策支持**:依据分析所得的信息为调度与运营提供策略建议。例如,在面对光伏发电波动时如何调整电网运行模式。 此压缩包文件提供了对光伏电站不确定性深入研究的方法,对于电力系统规划、操作及调度具有重要意义。通过运用奇诺多面体技术能够更有效地管理和减轻由光伏发电带来的不确定风险,从而提高整个电力系统的稳定性和可靠性。