
分治与递归的算法与分析实验一
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本实验为《分治与递归的算法与分析》课程的第一部分,旨在通过实践探索分治法和递归技术在解决复杂问题中的应用及其效率分析。
【实验目的】深入理解分治法的算法思想,并应用该方法解决实际问题。
【实验性质】验证性实验(学时数:2小时)
【实验内容与要求】
1. 设有n=2^k个运动员参加网球循环赛,设计一个满足以下条件的比赛日程表:
- 每位选手必须与其他n-1位选手各比赛一次;
- 每位选手每天只能进行一场比赛;
- 循环赛总共持续n-1天。
根据这些要求,可以将比赛安排在一个有n行和n列的表格中。第一列表示运动员编号,而第i行与第j列(j>1)的位置则表示第i个选手在第j天遇到的比赛对手。例如,在8名参赛者的情况下,日程表可能如下所示:
| | 第一天 | 第二天 | 第三天 | 第四天 |
|---|-------|--------|--------|--------|
| A | B | D | F | H |
| B | A | C | E | G |
| C | D | B | G | E |
| D | C | A | H | F |
| E | F | H | B | C |
| F | E | G | A | D |
| G | H | F | C | B |
| H | G | E | D | A |
请注意,这个表格仅是示例,并非实际的比赛日程表。根据给定的规则和分治法的思想,可以生成类似的安排方案以适应任意数量(2^k)参赛选手的情况。
全部评论 (0)


