Advertisement

基于深度卷积神经网络的入侵检测分析

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种基于深度卷积神经网络的新型入侵检测方法,通过高效的数据处理和模式识别技术,显著提升了网络安全防御系统的准确性和响应速度。 深度卷积神经网络实现入侵检测设计:首先进行了数据的加载和预处理。加载数据是指从文件或其他来源读取数据并将其导入到程序中进行进一步处理。预处理则是对数据进行清洗、转换和准备工作,以便于后续的分析和建模。在我们的代码中,数据预处理包括读取 Excel 文件、处理缺失值、划分训练集、验证集和测试集,并对标签进行转换和打乱顺序等操作。 接着进行了数据的探索性分析和可视化。首先,绘制了灰度图像,这有助于直观地了解数据的特征和结构,尤其对于图像数据而言,能够展示图像的像素分布和整体形态。其次,进行了 t-SNE 初始可视化,利用 t-SNE 算法对高维数据进行降维并在二维平面上进行可视化,从而帮助观察数据在低维空间中的分布和聚类情况。 这些可视化技术能够帮助我们更好地理解数据的特征和内在结构,为后续的建模和分析提供重要参考。本研究的数据集包含了 bot 攻击、DoS-slowhttptest 攻击、Brute Force-Web 攻击、Infiltration 攻击、DoS attacks-Slowloris 攻击、DDoS attack-LOIC-UDP 攻击以及正常流量数据。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究提出了一种基于深度卷积神经网络的新型入侵检测方法,通过高效的数据处理和模式识别技术,显著提升了网络安全防御系统的准确性和响应速度。 深度卷积神经网络实现入侵检测设计:首先进行了数据的加载和预处理。加载数据是指从文件或其他来源读取数据并将其导入到程序中进行进一步处理。预处理则是对数据进行清洗、转换和准备工作,以便于后续的分析和建模。在我们的代码中,数据预处理包括读取 Excel 文件、处理缺失值、划分训练集、验证集和测试集,并对标签进行转换和打乱顺序等操作。 接着进行了数据的探索性分析和可视化。首先,绘制了灰度图像,这有助于直观地了解数据的特征和结构,尤其对于图像数据而言,能够展示图像的像素分布和整体形态。其次,进行了 t-SNE 初始可视化,利用 t-SNE 算法对高维数据进行降维并在二维平面上进行可视化,从而帮助观察数据在低维空间中的分布和聚类情况。 这些可视化技术能够帮助我们更好地理解数据的特征和内在结构,为后续的建模和分析提供重要参考。本研究的数据集包含了 bot 攻击、DoS-slowhttptest 攻击、Brute Force-Web 攻击、Infiltration 攻击、DoS attacks-Slowloris 攻击、DDoS attack-LOIC-UDP 攻击以及正常流量数据。
  • Python系统.zip
    优质
    本项目为一个利用卷积神经网络实现的网络入侵检测系统,采用Python编程语言开发。通过深度学习技术提高网络安全防护能力,有效识别和防范各类网络攻击行为。 使用Python开发的卷积神经网络进行网络入侵检测可以达到99.5%的准确率。其中,`handle2.py`负责数据预处理工作;`main.py`则利用一层全连接层来处理从文件kddcup.data_10_percent_corrected_handled2.cvs中提取的数据;而`cnn_main.py`则是使用卷积神经网络对另一份数据集kddcup.data.corrected_handled2.cvs进行训练的代码。这两个数据集是从一个包含两个.gz格式压缩包文件夹内解压出来的,该文件夹还包含了记录了TensorFlow在模型训练过程中张量变化及准确率和loss值的日志信息的multi_logs文件夹。
  • 优质
    《深度卷积神经网络解析》一书深入浅出地探讨了深度学习中关键的卷积神经网络架构,适用于希望理解并应用CNN技术的研究者与工程师。 深度卷积神经网络详解:本段落将对深度卷积神经网络进行详细解析。由于原内容重复出现多次,这里简化为一次性的表述以提高文章的可读性。如果需要更深入的理解或具体的技术细节,请查阅相关的学术论文和技术文档。 (注:此处重写主要是为了去掉原文中不必要的重复,并未涉及联系方式和网址等信息的处理)
  • 与联邦学习.pdf
    优质
    本文探讨了利用深度神经网络和联邦学习技术在保护网络安全方面的应用,特别聚焦于提高网络入侵检测系统的效率和准确性。通过分布式数据训练模型,有效解决了数据隐私和安全问题,为构建更加智能、高效的网络防护体系提供了新的思路与解决方案。 本段落探讨了基于深度神经网络和联邦学习的网络入侵检测方法。通过结合这两种技术,可以有效提高入侵检测系统的准确性和鲁棒性,并且能够在保护用户隐私的同时增强网络安全防护能力。文中详细分析了该方案的技术细节及其在实际应用中的潜在优势。
  • 与联邦学习.pdf
    优质
    本文探讨了利用深度神经网络结合联邦学习技术在网络入侵检测中的应用,旨在提高安全防御系统的效率和隐私保护水平。 该论文提出了一种基于深度神经网络与联邦学习的新型网络入侵检测模型——DFC-NID。此模型结合了联邦学习框架及自动编码器优化技术下的深度神经网络(DNN),旨在提升网络入侵识别的准确性与效率。 具体而言,研究中所涉及的关键概念包括: 1. 联邦学习:这是一种新兴机器学习方法,允许多个参与者联合训练一个共享模型的同时保护数据隐私。 2. 深度神经网络 (DNN):一种强大的机器学习架构,在处理大规模复杂数据时展现出卓越的性能和并行计算能力。 3. 自动编码器技术:通过将高维度的数据压缩为低维表示,自动编码器能够提高深度模型的学习效率与精度。 4. 联邦学习框架:构建了一个允许分散式训练且保障隐私安全的分布式机器学习系统架构。 此外,DFC-NID模型旨在改进网络入侵检测机制。实验显示,在NSL-KDD和KDDCup99数据集上应用该模型后,其平均准确率达到了94.1%,相比传统的决策树、随机森林等方法提高了约3.1%的精度水平。 论文还强调了联邦学习带来的诸多优势:不仅增强了模型对外界变化的适应能力以及对敏感信息的安全防护措施;而且还有助于降低计算成本及缩短训练周期。最后,本段落倡导采用开放科学的理念来推动深度学习领域的发展,并进一步强化网络安全保护机制的重要性。
  • CNN
    优质
    本文章深入剖析了CNN(卷积神经网络)的工作原理和技术细节,探讨其在图像识别领域的广泛应用与优势。 想要入门神经网络并学习基础知识的话,可以阅读关于CNN(卷积神经网络)的书籍。这类书籍能够帮助初学者建立起扎实的基础理论知识体系。
  • 算法
    优质
    本研究提出了一种利用神经网络技术改进的网络入侵检测方法,旨在提高对新型网络攻击模式的学习和识别能力。通过优化模型架构与训练策略,有效增强系统的实时响应及防御效能。 《基于神经网络的网络入侵分析算法》主要探讨了网络安全领域及机器学习技术的应用,尤其是神经网络在其中的作用。网络安全是信息技术中的关键环节,旨在保护系统免受恶意攻击与未经授权访问的危害。通过识别异常行为来发现潜在威胁的方法被称为网络入侵分析,在这种情况下,神经网络被用于检测和分类正常活动与攻击性行为。 该研究中使用了一种融合了模糊C均值聚类(FCM)和长短期记忆(LSTM)的神经网络模型。模糊C均值算法能够处理边界不明确的数据集,并有助于识别潜在类别结构;而LSTM则是一种专门用于时间序列数据分析的循环神经网络,它通过记住过去的上下文信息来预测未来趋势。 在网络安全场景下,流量数据包含丰富的特征如源IP、目标IP地址等。这些特性可用于训练模型以区分正常活动和异常行为。结合FCM技术进行预处理后,LSTM能够更精确地学习并分类不同的网络模式,从而提高检测入侵的准确性和鲁棒性。 该项目所使用的netattack.mat数据集包含了模拟的各种类型攻击样本(例如拒绝服务、扫描等)及其对应的正常流量记录。通过标记的数据训练神经网络模型,并在实际应用中对其进行验证和优化,可以有效提升网络安全防护能力并及时识别潜在威胁。 总体而言,《基于神经网络的网络入侵分析算法》展示了如何利用先进的机器学习技术解决复杂的安全挑战,为提高互联网环境下的安全水平提供了新的视角与解决方案。
  • 原理
    优质
    本教程深入剖析卷积神经网络的工作机制和核心原理,涵盖其架构设计、参数优化及应用案例,适合对CNN有浓厚兴趣的研究者和技术人员。 本PPT详细介绍了卷积神经网络的起源背景、算法原理、执行过程以及CNN的应用场景。
  • 交通标志与识别
    优质
    本研究提出了一种利用深度卷积神经网络技术进行交通标志自动检测和识别的方法,旨在提高道路安全及驾驶体验。该方法通过大规模数据训练,有效提升了模型在复杂环境下的准确性和鲁棒性。 基于深度卷积神经网络的道路交通标志检测与识别技术能够有效提高道路交通安全性和效率。通过利用先进的机器学习算法,该系统可以自动识别道路上的各种交通标志,并进行精确的定位和分类。这不仅有助于驾驶员更好地遵守交通规则,还能为智能驾驶系统的开发提供强有力的技术支持。