Advertisement

关于无人驾驶汽车路径规划及跟随控制算法的研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究聚焦于无人驾驶汽车技术,深入探讨并开发了先进的路径规划与跟随控制算法,旨在提升车辆自主导航的安全性和效率。 本段落采用多点预瞄与滚动优化相结合的模型预测控制算法设计了汽车跟随转向控制系统,并在双移线工况下进行了不同速度条件下的实验测试。结果显示该控制器具有较小路径误差且适应性强,其性能优于Carsim控制器的表现。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究聚焦于无人驾驶汽车技术,深入探讨并开发了先进的路径规划与跟随控制算法,旨在提升车辆自主导航的安全性和效率。 本段落采用多点预瞄与滚动优化相结合的模型预测控制算法设计了汽车跟随转向控制系统,并在双移线工况下进行了不同速度条件下的实验测试。结果显示该控制器具有较小路径误差且适应性强,其性能优于Carsim控制器的表现。
  • 局部综述
    优质
    本研究综述聚焦于无人驾驶汽车领域的局部路径规划技术,全面分析了当前方法、挑战及未来发展方向,为该领域研究与应用提供指导。 本段落对近年来无人驾驶汽车路径规划算法进行了总结与归纳。首先介绍了目前主流的环境建模方法;接着详细阐述了各种路径规划算法,并通过分析它们各自的优缺点指出融合轨迹规划算法具有最佳适用性;最后,文章总结了当前研究中的挑战并提出了相应的建议。
  • 自动局部避障
    优质
    本研究聚焦于自动驾驶技术中的局部避障路径规划与跟踪控制系统设计,旨在提升车辆在复杂环境下的自主导航能力和安全性。通过优化算法和实时感知技术的应用,实现高效、安全的动态障碍物规避策略。研究成果对于推进无人驾驶汽车的实际应用具有重要意义。 采用分层控制架构搭建局部避障路径规划与跟踪控制系统模型。上层为避障路径规划层,基于人工势场(APF)和模型预测控制(MPC)算法设计了两种避障路径规划器。在设计APF避障路径规划器时,在斥力场上引入了车辆与目标点的距离因子,并增设虚拟子目标点,建立了道路边界斥力势场;而在设计MPC避障路径规划器时,则对目标函数中的避障功能进行了优化改进。 下层为跟踪控制层,基于MPC算法设计了路径跟踪控制器。通过CarSim和Simulink联合仿真模型,在30km/h、60km/h及90km/h的不同车速条件下,测试车辆沿双移线参考路径的跟踪性能,并进行仿真实验验证。 将前面两种规划器分别与跟踪控制器结合后搭建了两个集成控制系统模型并进行了相应的仿真。采用效果更佳的双层MPC控制模型完成了直线避障实车试验。结果显示:试验车辆成功避开障碍物,最大方向盘转角绝对值为188.2°,横摆角速度的最大绝对值为9.411°/s,均在合理范围内;这表明所设计的双层MPC控制系统具有良好的路径规划和跟踪效果,并且行驶过程符合稳定性需求。 ### 自动驾驶汽车局部避障路径规划与跟踪控制研究 #### 一、研究背景及意义 随着科技的进步和社会发展的需要,自动驾驶技术已成为汽车行业的重要发展方向之一。其中,局部避障路径规划和跟踪控制作为关键技术环节,在提高车辆的安全性和可靠性方面发挥着重要作用。通过高效准确的路径规划以及精准可靠的路径跟踪控制策略,可以确保在遇到障碍物时迅速作出反应并选择安全路线规避风险,从而保障乘客的生命财产安全。 #### 二、国内外研究现状 ##### 2.1 局部路径规划的研究进展 近年来,在局部避障路径规划领域内积累了大量的研究成果。主要方法包括基于人工势场(APF)和模型预测控制(MPC)。其中,APF通过吸引势场引导车辆向目标点移动,并利用斥力势场避免障碍物;而MPC则通过对未来状态的预测来实现最优路线的选择。 ##### 2.2 路径跟踪控制的研究进展 路径跟踪技术也得到了广泛关注。目前,基于MPC的方法因其良好的实时性和鲁棒性被广泛应用,在动态调整车辆参数以精确跟随预定轨迹方面表现出色。 #### 三、研究内容概述 本项目采用分层架构设计了一个局部避障路径规划与跟踪控制系统模型: 1. **上层:避障路径规划层** - 设计了改进型APF和MPC两种路径规划器。对APF的修改包括引入距离因子以及增设虚拟目标点,同时建立了道路边界斥力势场;而在优化MPC时,则着重于提升其避开障碍物的能力。 2. **下层:跟踪控制层** - 基于MPC算法开发了路径跟随控制器以确保车辆能够精确地遵循由上一层规划出的路线。 #### 四、实验验证 为了检验所提出方法的有效性,研究团队在不同速度条件下进行了仿真实验,并测试了车辆对双移线参考轨迹的跟踪能力。结果表明,在所有测试车速下,汽车均能稳定且准确地跟随预定路径行驶。 此外还实施了一项实车试验来评估上述控制策略的实际性能表现:使用改进后的MPC模型完成直线避障任务后发现,实验用车成功绕过了障碍物,并在最大方向盘转角和横摆角度方面都保持了合理的数值范围;这证明所设计的双层控制系统具备良好的路径规划与跟踪效果以及行驶稳定性。 #### 五、结论 本研究提出了一种基于分层控制架构的局部避障路径规划及跟踪系统模型。通过对APF和MPC算法进行改进,显著提高了其在复杂环境中的适应性和安全性;同时,利用MPC方法实现了高精度的轨迹跟随效果。通过仿真实验与实地测试验证了该方案的有效性,并为推动自动驾驶技术的发展提供了有力支持。 #### 六、展望 尽管取得了阶段性成果,但自动驾驶领域仍面临诸多挑战。未来研究可从以下几方面着手: 1. **环境感知能力提升**:进一步改进传感器配置和技术以提高复杂场景下的识别精度。 2. **多车协同避障策略开发**:探索建立车辆间协作机制来实现更高效的障碍物规避路径规划。 3. **极端条件适应性增强**:深入研究恶劣天气和特殊路况对系统性能的影响,提升整体鲁棒性和可靠性。 通过持续的技术创新与优化改进,自动驾驶技术将更加成熟可靠,并为人们的出行带来更多便利与安全保障。
  • MPC和RRT踪系统
    优质
    本研究致力于开发一种结合了模型预测控制(MPC)和随机树(RRT)算法的新型无人驾驶路径规划及跟踪方案,旨在优化车辆在复杂环境中的导航性能。 本段落主要研究无人驾驶车辆的路径规划与轨迹跟踪控制技术。首先介绍了问题背景及系统建模过程,包括车辆运动学模型和障碍物描述方法。随后设计了基于决策过程的预测控制算法,并专门讨论了信号灯对路径规划的影响。接着探讨了一种利用RRT(快速搜索随机树)算法进行无人驾驶车辆路径规划的方法,并结合MPC(模型预测控制),提出了新的路径规划与跟踪策略。 通过构建CarSim和Simulink联合仿真平台,研究者进行了多种道路场景下的仿真实验来验证新方法的有效性。实验结果表明: 1. 在不同速度、步长以及周期等条件的影响下,较低的速度、较大的步长及较长的周期有助于路径规划与控制更加接近目标轨迹。 2. 实验数据还显示,在一定范围内这些因素对跟踪效果影响不大,证明了所提算法具有良好的稳定性和鲁棒性。 3. 在十字路口左转场景中,车辆能够按照预设路线平稳准确地行驶。从起点到终点的整个路径跟踪过程非常顺畅且精确。参考轨迹与实际行驶轨迹几乎完全一致,确保了追踪精度。 实验结果显示最大横向误差为4毫米、纵向误差20毫米以及航向角偏差较小,进一步验证了所提方法的有效性。
  • 与SLAM
    优质
    本研究聚焦于无人驾驶技术中的路径规划及同时定位与地图构建(SLAM)算法,探索高效、精准的自动驾驶解决方案。 这段文字描述的内容包括了能够产生实际成果的典型路径规划算法以及较简单的SLAM( simultaneous localization and mapping)算法,并且这些算法都是通过Python语言实现的。
  • chap6_LocalPlan_TrackingCtrl_轨迹_基mpc_辆_
    优质
    本章节探讨了无人驾驶车辆中基于模型预测控制(MPC)的轨迹跟踪算法,重点研究其在实现精确路径跟随和动态调整驾驶策略中的应用。 在无人驾驶车辆模型预测控制的第二版第六章中,讨论了加入规划层的轨迹跟踪控制方法。
  • 自主轨迹-、轨迹、MPC模型预测
    优质
    本文聚焦于自主驾驶车辆中的路径规划与轨迹跟踪控制技术,深入探讨了基于MPC(模型预测控制)的方法,旨在提升自动驾驶系统的安全性和效率。 为了减少道路突发事故并提高车辆通行效率,研究车辆的紧急避障技术以实现自主驾驶至关重要。基于车辆点质量模型,我们设计了非线性模型预测控制(MPC)路径规划器;同时,根据车辆动力学模型,我们也开发了线性时变MPC轨迹跟踪器。
  • 论文汇总
    优质
    本论文综述汇集了最新的研究成果与进展,专注于无人驾驶车辆中的路径规划算法。文章深入探讨并比较了几种主流算法,并分析其在不同场景下的应用效果及优缺点。 无人驾驶中的路径规划算法论文集合
  • 自动换道轨迹策略
    优质
    本研究聚焦于开发高效的算法与模型,以优化自动驾驶汽车在复杂交通环境中的车道变换行为,涵盖轨迹规划和精准控制技术。 首先分析了自动驾驶车辆在换道过程中的行为特性及其与周围人工驾驶车辆的交互模式,并基于效用理论建立了分层Logit模型来模拟换道决策过程的主要方面——目标车道选择及目标车道间隙接受情况,提取影响这些决策的关键参数并利用极大似然估计方法进行标定。通过仿真分析了不同换道策略对车辆运行特性的影响。 其次,在确保自动驾驶车辆安全换道的前提下兼顾乘客舒适度,研究根据可能发生的临界碰撞状态推导出初始时刻的最小纵向安全距离,并采用多项式函数曲线规划轨迹,建立了四种不同的换车道模型:自由换道、原车道有前车障碍时的换道、目标车道存在前车阻碍情况下的换道以及面对后方车辆威胁的目标车道路径选择。对于部分模型进行了仿真测试以验证其有效性。 最后推导了自动驾驶汽车在执行换道动作过程中的运动学和横向动力学公式,通过结合预测控制与滑模控制技术设计了一套有效的轨迹跟踪控制系统来确保精确的行驶路线遵循性。 ### 自动驾驶车辆路径选择及轨迹规划研究 #### 一、背景和目标 随着科技的发展,自动驾驶汽车正逐渐成为汽车行业的新方向。在这一背景下,安全高效的车道变换对于实现完全自主导航至关重要。本项目致力于深入探究自动驾驶中换道行为的关键影响因素,并通过构建合理的决策模型与精确的路径规划算法来确保车辆能够在复杂交通环境中顺利执行换道操作。 #### 二、决策过程建模 ##### (一)交互分析和模型设计 在进行车道变换时,必须仔细考虑周围人工驾驶车辆的行为。基于效用理论建立了一个分层Logit框架用于描述自动驾驶车的路径选择及目标路段间隙接受度评估机制,其中包含两个主要方面:确定最佳的目标道路以及判断该道路上是否有足够的空间以安全完成换道动作。 ##### (二)模型参数优化 - **车道选取**:基于车辆当前位置和速度等关键因素计算出各潜在目标路线的价值,并据此做出选择。 - **间隙接受度评估**:通过效用理论来量化不同间距下的价值,从而决定是否可以利用现有的道路空间执行换道。 #### 三、路径规划策略 为了保证自动驾驶车能够安全地完成车道变换任务,在考虑避免碰撞的同时还需注重乘客的舒适体验。为此我们提出了一系列轨迹模型: - **自由模式**:当周围没有障碍物时允许车辆自主选择最优的时间和路线进行变道。 - **前方有障碍情况下的路径调整策略**:这种情况下,需要根据前车的速度与位置信息动态地调节换车道时机。 - **目标道路存在前行阻碍的解决方案**:在此情形下不仅要考虑自身与先行者的距离还要评估其状态以防止碰撞的发生。 - **后方威胁处理机制**:面对来自后面车辆的压力时提前规划好路径确保有足够的空间执行变道动作。 所有模型都采用了多项式函数曲线进行轨迹设计,保证了路线的连续性和平滑性,并通过实验验证它们的有效性。 #### 四、跟踪控制方案 为了使自动驾驶车能够准确跟随预设轨道行驶,在研究中还探讨了如何利用预测控制和滑模技术来开发出一套高效的路径追踪控制器。这包括建立车辆在执行变道操作过程中的运动学方程与横向动力模型,并在此基础上设计相应的控制系统以确保精确的跟踪性能。 通过上述对自动驾驶汽车换车道过程中决策行为、轨迹规划及跟踪控制等方面的研究,本项目不仅为未来智能交通系统的发展提供了重要的理论支持和实用技术方案。