本课程设计围绕小直流电机调速控制展开,采用单片机技术实现对电机速度的有效调节。通过理论学习与实践操作相结合的方式,深入探讨了PWM调制原理及其在电机控制系统中的应用,旨在培养学生的硬件电路设计能力、软件编程技巧以及系统调试技能,为今后的自动化控制领域研究打下坚实基础。
小直流电机调速控制设计
直流电机因其良好的线性特性和优异的控制性能,在大多数变速运动控制系统及闭环位置伺服系统中被广泛选用为最佳选项。随着计算机技术在控制领域的不断进步,以及高开关频率全控型第二代电力半导体器件(如GTR、GTO、MOSFET和IGBT)的发展,脉宽调制(PWM)直流调速技术的应用使得直流电机得到了更广泛的使用。
为了满足小型直流电机的需求,各半导体制造商推出了专门用于直流电机控制的集成电路。这些专用集成电路构成了基于微处理器控制的伺服系统,并且它们能够直接与微处理器接口。然而,由于这类集成电路输出功率有限,不适于驱动大功率直流电机的应用需求,因此常采用N沟道增强型场效应管构建H桥电路来实现对大功率直流电机的有效控制。
在实际应用中,最常用的直流电机驱动方式为H型全桥式电路设计。这种结构能够灵活地支持直流电机的四象限运行模式:正转、反转以及对应的制动状态。此外,该驱动系统具备响应速度快、精度高和效率高等优点,并且可以直接与微处理器进行接口连接。
通常情况下,通过调整施加于电动机两端电压来实现速度调节是可行的方法之一。然而,在实际设计中往往难以获得可变电源输出或模拟调速装置不易受单片机控制的问题存在;因此采用脉宽调制(PWM)技术成为一种有效的解决方案。方波的有效值与其峰值及占空比相关联,通过改变后者的大小可以实现电机转速的动态调整。
在软件层面实施PWM方法时,可以选择使用延时或定时器两种策略来生成所需的信号序列;但前者可能会占用较多CPU资源而影响系统其他任务处理能力。