Advertisement

STC15单片机PID算法数字电源开发板BUCK/BOOST套件 恒压恒流功能-电路设计方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目基于STC15单片机设计了一款具备PID控制算法的数字电源开发板,支持BUCK和BOOST两种拓扑结构,实现精确的恒压恒流输出。 本套件采用易于理解的STC15W4K单片机作为主控芯片,并利用其高分辨率16位增强型PWM技术来驱动同步整流MOSFET,结合PID算法实现高效且精确的BUCK与BOOST数字电源开发。该套件旨在帮助开发者快速掌握基于PID调整方法的数字电源设计技巧以及高效的同步整流电源拓扑结构,从而缩短产品开发周期。 对于学生群体而言,这套件提供了宝贵的电子电路设计资源和实践平台。其主要特性如下: - **BUCK模式**: - 输出选项:恒压、恒流或同时具备两种功能(仅限一种选择) - 输入电压范围:13至35伏特 - 输出电压调节范围:2至30伏特,支持软件调整 - 过电流保护值可调为5安培以内,并且最大输出功率不超过100瓦 - 最高效率可达94% - 涟波与噪声控制在平均值400毫伏以下 - **BOOST模式**: - 输出选项:恒压、恒流或同时具备两种功能(仅限一种选择) - 输入电压范围:13至30伏特 - 输出电压调节范围:15至35伏特,支持软件调整 - 过电流保护值可调为5安培以内,并且最大输出功率不超过100瓦 - 最高效率可达95% - 涟波与噪声控制在平均值400毫伏以下 此外,该套件还具有快速的PID调节能力(每秒2万次),以及优秀的负载调整率和良好的响应特性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STC15PIDBUCK/BOOST -
    优质
    本项目基于STC15单片机设计了一款具备PID控制算法的数字电源开发板,支持BUCK和BOOST两种拓扑结构,实现精确的恒压恒流输出。 本套件采用易于理解的STC15W4K单片机作为主控芯片,并利用其高分辨率16位增强型PWM技术来驱动同步整流MOSFET,结合PID算法实现高效且精确的BUCK与BOOST数字电源开发。该套件旨在帮助开发者快速掌握基于PID调整方法的数字电源设计技巧以及高效的同步整流电源拓扑结构,从而缩短产品开发周期。 对于学生群体而言,这套件提供了宝贵的电子电路设计资源和实践平台。其主要特性如下: - **BUCK模式**: - 输出选项:恒压、恒流或同时具备两种功能(仅限一种选择) - 输入电压范围:13至35伏特 - 输出电压调节范围:2至30伏特,支持软件调整 - 过电流保护值可调为5安培以内,并且最大输出功率不超过100瓦 - 最高效率可达94% - 涟波与噪声控制在平均值400毫伏以下 - **BOOST模式**: - 输出选项:恒压、恒流或同时具备两种功能(仅限一种选择) - 输入电压范围:13至30伏特 - 输出电压调节范围:15至35伏特,支持软件调整 - 过电流保护值可调为5安培以内,并且最大输出功率不超过100瓦 - 最高效率可达95% - 涟波与噪声控制在平均值400毫伏以下 此外,该套件还具有快速的PID调节能力(每秒2万次),以及优秀的负载调整率和良好的响应特性。
  • STM32F334 51同步整BUCK/BOOST 双向DC-DC转换器 升降转换器 ...
    优质
    这款STM32F334数字电源开发板集成了51单片机,支持BUCK和BOOST双向DC-DC转换功能,适用于升降压转换、恒压恒流等多种应用。 本设计基于STM32F334数字电源开发板进行高效同步buck、boost及buck-boost双向DC-DC转换器的设计与实现,支持恒压恒流供电功能。该微控制器配备高分辨率定时器(HRTIM)外设,能够生成多达10个信号,并处理多种输入信号以控制、同步或保护电路。其模块化架构允许对大部分变换拓扑和多并联转换器进行灵活配置与重新设置。 STM32F334的HRTIM功能可以产生互补PWM波形,该定时器的最大计数频率高达4.608G,时间控制精度可达217ps。参照STM32F334设计手册,笔者完成了高精度PID数字电源的设计工作。buck、boost及buck-boost均为同步整流技术,并采用输入输出LC滤波方式,在重载和轻载条件下纹波均低于100mV;同时其响应环路时间小于10us。 STM32F334 数字电源开发板具备以下功能: - STC15 PID数字电源BUCK/BOOST同步整流 - BUCK 开发版电气输入端口指标:输入电压范围为 10~55V,输出电压范围为 5~50V;电流最大不超过6A(良好散热条件下),功率同样在该条件下的上限是200W。设计高效并支持的最大效率达96%以上。 - 输出纹波通过LC滤波保持低水平,且无须额外散热片的输出功率可达100W;对于超过此阈值的情况,则需要采取良好的散热措施。 - 调压调流可以通过UART控制或按键操作实现,并具备IIC OLED 12864与电脑串口软件显示功能。 Boost 开发版电气指标: - 输入电压范围为 10~55V,输出电压从 12 到最高可达 60V;电流同样在良好散热条件下不超过6A。 - 功率上限依旧设定在良好的散热条件下不高于200W。设计高效并支持的最大效率超过97%。 - 输出纹波通过LC滤波保持低水平,且无须额外散热片的输出功率可达100W;对于超过此阈值的情况,则需要采取良好的散热措施。 - 调压调流可以通过UART控制或按键操作实现,并具备IIC OLED 12864与电脑串口软件显示功能。 Buck-Boost升降压开发版电气指标: - 输入电压范围为 10~55V,输出电压从 5 到最高可达 50V;电流同样在良好散热条件下不超过6A。 - 功率上限设定在良好的散热条件下的最大值是150W。设计高效并支持的最大效率超过BUCK的92%及Boost 的93%,但若加入防反接保护,效率会降低约 2~3 %。 - 输出纹波通过LC滤波保持低水平,且无须额外散热片的输出功率可达100W;对于超过此阈值的情况,则需要采取良好的散热措施。 - 调压调流可以通过UART控制或按键操作实现,并具备IIC OLED 12864与电脑串口软件显示功能。 综上所述,STM32F334开发板适用于数字电源、照明系统、不间断电源及太阳能逆变器等多种应用场景。
  • Buck-Boost的MATLAB仿真
    优质
    本研究利用MATLAB进行Buck-Boost变换器的恒流充电及恒压放电特性仿真分析,探讨其在电池管理系统中的应用效果。 使用buck boost耦合电路对电池进行恒流充电,并利用反向电路实现恒压放电的MATLAB仿真。
  • TL431.zip
    优质
    本资料提供了一种基于TL431精密可调齐纳二极管的高效恒压恒流电源设计方案,适用于各种电子设备供电需求。 TL431恒压源和恒流源的Multisim仿真电路图,用于实现恒定输出3V电压的功能。所使用的Multisim版本为14.0。
  • 0-60V, 0-20A BUCK调节 PCB
    优质
    这款0-60V、0-20A BUCK恒流恒压调节PCB电源板专为精密电子设备设计,具备高效稳定的电流和电压输出能力,适用于多种工业与科研应用场合。 在进行技术参考时,请查阅相关博客文章以获取更深入的理解和技术指导。例如,在某篇关于特定主题的详细讨论中,作者提供了丰富的代码示例、理论分析以及实践建议,这些内容对于掌握该领域的知识非常有帮助。 请注意,上述描述并未包含任何具体的联系方式或链接地址,因此在引用时只需关注其中的技术信息和方法即可。
  • 快速充模块
    优质
    本项目致力于研发一种高效的恒流恒压快速充电电源模块电路,旨在满足电子设备对安全、快速且稳定的充电需求。 本设计采用NEC upd78F0547单片机作为主控制器,通过键盘设置直流电源的输出电流,并可通过液晶显示器显示输出电压和电流值。主电路由运放LM324和达林顿管组成调节电路,电路设计合理且编程正确。除了完成题目要求外,还增加了步进设置功能,可以设定不同的恒流和稳压值。
  • 23 PID调节器(STM32实现).rar_PID_STM32
    优质
    本资源提供了一种基于STM32微控制器实现PID算法控制的智能充电方案,能够精确地进行恒压和恒流模式切换,适用于多种电池充电需求。包含详细的设计文档与程序代码。 STM32 使用 PWM 波输出恒压恒流源哈哈哈哈哈哈哈
  • 基于SG3525芯的高LED
    优质
    本项目致力于研发一款高效能LED电源,采用SG3525芯片实现恒压恒流输出,适用于大功率照明系统,具有稳定性强、效率高的特点。 本段落介绍了一种采用SG3525作为控制芯片并使用半桥变换拓扑结构的大功率LED电源设计。该电源输出为恒压恒流12V/20A,当负载小于0.6W时工作在恒流模式,而负载大于0.6W时则切换到恒压模式。其最大输出功率可达240W,并具备电流均匀可调、宽输入电压范围和低输出纹波的特点。
  • 基于
    优质
    本项目旨在设计并实现一款基于单片机控制的数控恒流源电路。通过精确调节电流输出,满足不同电子设备测试需求,具有高稳定性和灵活性。 本段落介绍了一种采用模块化设计的数控恒流源,该设备基于单片机控制技术,显著提升了恒流源的稳定性和输出精度。通过键盘与开关设置输出电流值,并利用单片机编程实现显示和控制功能;同时借助DAC0832芯片进行D/A转换以生成模拟输出电压信号,再经由功率三极管及运算放大器构成的反馈系统确保稳定的恒定电流输出。 恒流源是一种能够向负载提供稳定电流的电源设备,在电子测量仪器、激光技术、传感器应用、超导研究以及现代通信等高新技术领域中得到了广泛应用。随着电子技术的进步,数控恒流源的应用范围日益扩大,并展现出良好的发展前景。此外,这种技术在工业界也有着迫切的需求。
  • 及原理图解决
    优质
    本方案专注于数控恒压恒流电源的设计与实现,提供详尽的电路原理图和实用的设计建议,旨在优化电源性能,满足高精度、高效能的应用需求。 在深入讲解数控恒压恒流电源设计解决方案之前,我们需要了解一些基础概念和原理。直流稳压电源是电子实验中的重要设备之一,它能为电路提供稳定的电压输出,在众多的电源设计方案中,恒压恒流电源因其性能稳定而被广泛应用。 一个标准的恒压恒流电源结构主要包括电压基准源、调整管、误差放大器、电压取样和电流取样几个部分。其中,电压基准源向误差放大器提供准确且稳定的参考电压,并对温度变化不敏感。通过将取样电路与误差放大器及调整管组合形成一个闭环回路,可以确保输出电压的稳定性。这一结构的特点在于:由于电压基准源和取样电路是固定的,因此输出电压以及最大输出电流也是固定的。 为了调节电源的输出电压和限制电流的最大值,一些设计采用了可变电阻的方法。例如,在图示的基本稳压电源简图中通过改变R3阻值来调整输出电压范围,这种方法在诸如LM317这样的可调稳压芯片应用广泛。这类芯片通常还集成了过热保护等附加功能,然而当负载发生变化时,这些集成的温度控制措施可能会导致性能不稳定。 为解决这个问题可以采用高性能电压基准如LM399和LTZ1000来提供更稳定的参考电压,尽管价格较高但能有效提升电源稳定性。传统的调节方法通过改变取样电阻阻值调整输出电压虽然成本较低,但在长时间使用后可能因机械接触不良导致输出异常。 随着技术的进步,高端的数控稳压电源开始采用数字控制的方法,如Agilent E3640A这类产品能够通过按键或旋转编码器设定电压和电流值,有效避免了传统调节方式带来的风险。然而这些设备通常只能提供离散的电压点设置,并不具备连续输出能力。 本段落介绍了一种新的数控恒压恒流电源设计方案,该方案具备多种先进特性:如0至20V可调范围、步进值为0.05V以及小于±10mV的输出误差;电流设定从零到三安培之间变化,步长设置为0.01A且显示精度保持在±5mA以内。此外还具备低纹波输出特性,并支持参数记忆和使能功能。 制作数控恒压恒流电源的关键在于理解其工作原理。首先将220V交流电通过变压器T1降压至交流12V,再利用桥式整流电路转换成直流电压。VD1至VD4组成的桥式整流器是电子学中的基础组件之一,用于实现从交流到直流的转变。 电源输出调节通常依靠改变取样电阻阻值来完成,这使得输出电压具备可调性;射极跟随器因其接近恒定放大倍数(大约为1)而被广泛使用,在计算中可以忽略其影响。整流后的直流电通过运算放大器根据参考电压进行调整后送至负载。 设计时需精心选择和配置每个组件以确保良好的恒压及恒流效果,例如采用ICL7107这样的专业测量芯片来保证输出值的准确性;同时添加过热保护、短路检测等安全机制也是必要的。此外,通过12864液晶显示器实时显示电源状态(如电压与电流读数)为用户提供直观反馈并便于监控和调整。 综上所述,数控恒压恒流电源不仅在性能方面达到了高标准,在用户体验设计上也提供了便利性和可靠性保障。