Advertisement

12V转5V和12V转3.3V的降压芯片选择与电路图

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文章详细介绍如何从众多选项中挑选合适的12V转5V及12V转3.3V降压芯片,并提供实用电路设计参考。 2.1 多源异构知识融合面临的挑战 数据融合是从不同来源的数据、信息进行联合、相关及组织处理以寻找其真实值的过程。相比之下,知识融合面临三大主要挑战。 首先,在输入形式上,数据融合的输入是一个二维矩阵(如图1(a)),而知识融合则需要一个三维矩阵作为输入(如图1(b))。这一额外维度代表了提取器的数量,意味着每个单元格不仅表示从特定Web源中抽取的数据项值,还包含了用于该操作的具体提取器信息。因此,在整个过程中都可能出现错误,这些错误可能源自于原始的Web源、三元组识别过程中的问题、实体连接以及属性连接等环节。 其次,知识融合希望预测概率能准确反映每个三元组的真实可能性,并且这种准确性需要满足单调性要求:即具有较高预测概率的三元组其真实出现的概率也应当高于那些预测概率较低的三元组。 最后,由于规模巨大的问题,在当前的数据融合实验中使用的最大数据集包含170K个数据源和400K条数据项。相比之下,知识融合通常需要处理数量级更大的数据量,这给实际操作带来了极大的挑战。 2.2 融合方法选择的标准 现有的用于解决基本数据融合问题的方法同样可以被应用到知识融合的场景中去。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 12V5V12V3.3V
    优质
    本文章详细介绍如何从众多选项中挑选合适的12V转5V及12V转3.3V降压芯片,并提供实用电路设计参考。 2.1 多源异构知识融合面临的挑战 数据融合是从不同来源的数据、信息进行联合、相关及组织处理以寻找其真实值的过程。相比之下,知识融合面临三大主要挑战。 首先,在输入形式上,数据融合的输入是一个二维矩阵(如图1(a)),而知识融合则需要一个三维矩阵作为输入(如图1(b))。这一额外维度代表了提取器的数量,意味着每个单元格不仅表示从特定Web源中抽取的数据项值,还包含了用于该操作的具体提取器信息。因此,在整个过程中都可能出现错误,这些错误可能源自于原始的Web源、三元组识别过程中的问题、实体连接以及属性连接等环节。 其次,知识融合希望预测概率能准确反映每个三元组的真实可能性,并且这种准确性需要满足单调性要求:即具有较高预测概率的三元组其真实出现的概率也应当高于那些预测概率较低的三元组。 最后,由于规模巨大的问题,在当前的数据融合实验中使用的最大数据集包含170K个数据源和400K条数据项。相比之下,知识融合通常需要处理数量级更大的数据量,这给实际操作带来了极大的挑战。 2.2 融合方法选择的标准 现有的用于解决基本数据融合问题的方法同样可以被应用到知识融合的场景中去。
  • 12V5V12V3.3V.pdf
    优质
    本PDF文档提供了详细的电路设计和参数配置,帮助用户实现从12V电压转换为5V及3.3V稳定的输出电压,适用于电子设备电源供应方案。 提供12V转5V降压芯片、12V转3.3V稳压芯片以及多种LDO和DC-DC降压解决方案,共计二十多款产品选择。
  • 12V5V12V3.3V规格书型表.pdf
    优质
    本资料详述了多种用于将12V电压降至5V和3.3V的降压转换器芯片,包括其技术参数、性能指标,并提供全面的选型指南。 PW2162 是一款完全集成的高效率 2A 同步整流降压转换器,在宽输出电流负载范围内保持高效运行。该设备提供 PWM 控制和 PFM 模式开关控制两种工作模式,从而在更广泛的负载范围内实现更高的效率。PW2162 需要最少数量的标准外部组件,并以符合 ROHS 标准的 6 引脚 SOT23 封装形式提供。
  • 72V5V12V3.3V规格书.pdf
    优质
    本PDF文档详细介绍了用于将72V电压转换为5V、12V及3.3V的降压芯片技术规范,包括电路设计参数与应用指南。 PW2902 是一款支持宽电压输入的开关降压型 DC-DC 转换器芯片,内置 100V/5A 功率 MOSFET,最高可承受 90V 的输入电压。该芯片具有低待机功耗、高效率和低纹波的特点,并且具备出色的母线电压调整率与负载调整率。 PW2902 支持大电流输出,最大可达 2A 以上。它同时支持恒压和恒流输出功能,采用固定频率的 PWM 控制方式,典型开关频率为 140KHz,在轻载条件下会自动降低工作频率以提高转换效率。 此外,PW2902 内部还集成了软启动电路、过温保护及短路与限流保护等功能,提高了系统的可靠性。当输出电压设定为 5V 或者 12V 时,该芯片能够提供高达 2A 的电流输出能力。
  • 12V5V7805手册
    优质
    本手册详尽介绍了基于7805芯片的12V至5V稳压电路设计与应用,涵盖原理图、参数规格及故障排除等实用信息。 我有详细的12V稳压到5V的原理图及PCB图,并且手头还有7805芯片手册。
  • 3.7V3.3V5V3.3VIC.pdf
    优质
    本PDF文档详细介绍了3.7V至3.3V降压转换及5V至3.3V升压/降压集成电路的应用与设计原理,适用于电子设备电源管理。 3.7V 降压至 3.3V 的电路、5V 降压至 3.3V 的 IC、支持 3A 输出的降压芯片、适用于各种应用的高效率稳压芯片以及低功耗 LDO 芯片。此外,还有固定输出为 3.3V 的稳压器和升降压转换功能的电路可供选择。这些器件的选择依据包括具体的应用需求和技术规格说明。
  • 12V换为5V3.3V,LM1875
    优质
    本项目介绍如何利用LM1875芯片将12V电源分别转换成稳定的5V与3.3V输出电压,适用于多种电子设备供电需求。 二层板12V转5V和3.3V电路设计使用LM1875芯片,提供PCB源文件可以直接打板制作。电感封装偏小,请自行调整大小以适应实际需求。
  • 9V至3.3V12V3.3V方案
    优质
    本方案详细介绍了从9V到3.3V和12V到3.3V的恒压稳压芯片的选择标准与应用技巧,旨在帮助工程师优化电源管理设计。 在电子设计中,特别是嵌入式系统里为MCU供电的场景下,从9V或12V转换到3.3V且要求输出电压稳定、低纹波以及大电流(如1A, 2A, 3A)的应用时,选择合适的电源转换芯片尤为重要。线性稳压器(LDO)虽然在小电流应用中能够提供稳定的电压,并具有简单的电路设计和较低的成本优势,但其效率通常只能达到60%左右,在大电流需求下会产生大量热量并降低整体系统的能效。 相比之下,DC-DC降压变换器(Buck Converter)通过开关模式工作,利用电感与MOSFET交替导通来实现高效的电压转换。这种设计能够显著提高电源的效率至90%,非常适合需要稳定输出且电流较大的应用场合,并减少了由于能量损失导致的发热问题。 例如,在从9V或12V降至3.3V的应用中,可以考虑使用PW2162这款高效同步降压变换器,它支持4.5V到16V宽范围输入电压和高达2A的最大负载电流。此外,该芯片还具备可调输出电压功能,并能在高频(最高可达600kHz)下工作以允许采用小型贴片电感元件,从而在减小电路板面积的同时保持高效性能。 对于更大电流的应用需求,则可以考虑PW2163型号的DC-DC降压变换器,它同样具有SOT23-6封装形式和与PW2162相同的引脚配置,并能够提供高达3A的最大输出电流。另外,针对更广泛的输入电压范围(4V至30V),并要求最大输出电流为1.2A的情况,则可选择PW2312这一型号。 尽管LDO在低功率需求时表现出色,但在大负载条件下效率低下且存在散热问题,因此不推荐用于超过100mA的应用场景。然而,在小电流或电压转换范围较小的情况下(如从12V降至3.3V),一些常见的LDO产品例如PW6566、PW6218和PW6206等可以提供一个简洁且经济的解决方案。 综上所述,当需要实现9V至3.3V或12V至3.3V的大电流转换时,DC-DC降压变换器如PW2162、PW2163或者PW2312是更为理想的选择。这些芯片不仅能够提供高效的电源管理解决方案,在稳定性和散热性能方面也优于LDO。然而在低功率需求场合下,则可以考虑使用像PW6566或PW8600这样的线性稳压器来满足特定的应用要求和成本预算限制。
  • 12V5V3.3V换模块
    优质
    这款电源转换模块能够高效地将12伏特电压降至5伏特或3.3伏特,适用于各种电子设备和电路板供电需求,确保稳定可靠的电力供应。 +12V到-12V转换为+5V、+8V和+3.3V的电源模块。