Advertisement

STM32H7的串口及DMA双缓存配置方案。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过采用STM32H7芯片的双缓存配置策略,并结合串口与DMA的数据总线通信方式,该方案可作为一种灵活的扩展手段,方便地与其他DMA技术集成。此外,为了便于用户理解和应用,本文档同时包含了作者撰写的博客链接,其中提供了更详细的配置指导。本文档专注于单纯的串口与DMA双缓存配置实现,用户可以根据自身需求自行添加任务进行测试验证。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32H7DMA文件
    优质
    本配置文件针对STM32H7系列微控制器,实现串口通信结合DMA传输技术的双缓冲机制,优化数据收发效率,确保通讯流畅无阻。 基于STM32H7的双缓存配置方案采用串口+DMA的方式进行实现。此方法同样适用于其他方式结合DMA的应用场景,并且配合本人博客中的内容能够更容易理解如何进行相关配置。本段落档主要专注于介绍纯串口+DMA双缓冲区配置,用户可以在此基础上添加一个任务来进行测试。
  • STM32F429 ADCDMA中断
    优质
    本文章介绍了如何在STM32F429微控制器上配置ADC双缓冲与DMA传输,并启用中断功能,实现高效的数据采集和处理。 在原子ADC的基础上,使用STM32的ADC模块采集反馈电压,并通过双缓冲DMA传输数据。
  • STM32F4DMA冲示例程序
    优质
    本示例程序展示了如何在STM32F4微控制器上使用串口和DMA实现双缓冲数据传输,有效提升通信效率。 基于STM32F4平台的串口DMA双缓冲实验程序具有空闲中断处理不定长数据的能力,并采用了FIFO循环结构以确保稳定性。该程序可以直接应用于项目中,在实测条件下,即使在2M波特率下也能保证稳定运行无压力。
  • STM32H750 Cube +DMA
    优质
    本教程详细介绍如何在STM32H750微控制器上使用STM32CubeMX配置串口通信,并结合DMA实现高效数据传输。 STM32H750是意法半导体(STMicroelectronics)推出的一款高性能、低功耗微控制器,属于STM32H7系列。该系列基于Arm Cortex-M7内核,提供高速计算能力和丰富的外设接口,在工业控制、物联网设备和高端消费电子产品等领域广泛应用。 本段落将探讨如何使用STM32H750的串行通信接口(UART)及直接存储器访问(DMA)功能。“STM32H750 Cude 串口+DMA”主题中,我们将深入研究这两个关键技术的应用细节。 首先,STM32H750上的串口是通用异步收发传输器(UART),用于实现设备间的数据通信。它支持全双工模式,并且可以同时进行数据的发送和接收操作。通过配置相关的寄存器参数,如波特率、数据位数、停止位及奇偶校验等,我们可以灵活地设置串口的工作方式。 其次,DMA是一种允许外设直接访问内存的技术,无需CPU介入即可完成数据传输任务。在STM32H750上使用DMA可以显著减少CPU的负担,并提高系统的效率。配置好相应的DMA通道后,通过UART接收或发送的数据会自动从指定地址读取或者写入到内存中,从而让CPU能够专注于其他高优先级的任务。 借助于STM32Cube软件开发环境,我们可以轻松地完成对STM32H750的串口和DMA功能的配置。该集成开发环境中包括代码生成器、HAL库及中间件等工具,大大简化了硬件抽象层(HAL)的设置与驱动程序编写过程。 具体步骤如下: 1. 使用STM32CubeMX创建项目,并选择STM32H750芯片;进行时钟源和树配置。 2. 在外设配置界面中启用所需的UART接口及相应的DMA通道。 3. 配置UART参数,如波特率、数据位数等通信特性。 4. 设置DMA相关参数,包括传输方向(TX或RX)、大小限制、内存到内存模式等选项。 5. 生成初始化代码以创建HAL库函数和结构体定义文件。 6. 编写应用程序,并调用相应的启动串口DMA传输的API函数如`HAL_UART_Transmit_DMA()` 或 `HAL_UART_Receive_DMA()` 7. 实现回调处理程序,例如用于发送完成或接收错误情况下的响应。 在实际应用中应注意以下几点: - 确保内存分配和保护措施以避免数据冲突。 - 正确设置中断优先级确保串口与DMA中断及时响应。 - 设置合适的UART接收FIFO水位标志防止数据丢失问题发生。 - 根据需要选择单次或周期性传输模式来优化资源利用。 总之,STM32H750的串口和DMA功能在嵌入式系统中扮演着重要角色。通过使用STM32Cube工具可以轻松实现配置与编程任务,理解这些技术细节对于充分发挥该微控制器性能至关重要。
  • STM32H7 ADC与DMACubeMX项目
    优质
    本教程详细介绍了如何使用STM32CubeMX工具为STM32H7系列微控制器设置ADC和DMA功能的步骤及配置方法。 该工程在CubeMX工具配置下完成ADC通过DMA进行数据传输,并解决了默认配置环境下DMA无法正常传输数据的问题。
  • DMA+空闲中断+.zip
    优质
    本资源探讨了采用DMA技术结合空闲中断和双缓冲机制的设计方案,旨在提高数据传输效率与系统响应速度。适合嵌入式系统开发人员研究参考。 该项目代码为个人项目需要所编写,主芯片采用stm32f103c8t6, 包括RTC、外部存储、内部存储以及GPRS操作等多个文件供参考使用。usart2的数据处理调试已成功完成,采用了DMA空闲中断加双缓冲机制。
  • CUBEMX与STM32H7DMA收发IDLE中断处理
    优质
    本文介绍如何使用CubeMX配置STM32H7芯片的串口,并结合DMA和IDLE中断实现高效的数据传输与处理,适合硬件开发工程师参考。 STM32H750VBT6的串口DMA发送和接收以及IDLE空闲中断功能通过USART1实现,并且下载后可以直接使用。
  • STM32 HAL库与STM32CubeMXDMA
    优质
    本篇文章详细介绍了如何使用STM32 HAL库和STM32CubeMX工具进行串口DMA传输的配置,旨在帮助开发者更高效地完成硬件抽象层编程。 STM32 HAL库是由ST公司开发的一种高级抽象层库,为STM32微控制器提供了一套标准化、模块化的编程接口。该库简化了开发者的工作流程,并使代码编写更加高效且易于移植。借助于STM32Cube MX配置工具,我们可以迅速设置和初始化各种外设功能,包括串口通信和DMA(直接存储器访问)。 在嵌入式系统中,串口通信是设备间数据传输的重要手段之一。STM32的串口支持多种模式如UART(通用异步收发传输器)及USART(通用同步异步收发传输器)。HAL库提供了用于管理这些功能的一系列API接口,包括发送和接收数据、设置波特率、校验位以及停止位等。 DMA是一种硬件机制,在无需CPU干预的情况下直接在内存与外设之间进行数据传输。使用STM32中的串口DMA功能可以实现大容量的数据高速传输;当大量数据需要被传送时,CPU可以在执行其他任务的同时保持高效运行。此外,STM32的DMA控制器支持多个通道,并且每个通道都能够独立配置以服务不同的设备。 利用STM32Cube MX配置工具设定串口和DMA的过程如下: 1. 启动并选择目标STM32系列芯片,在项目中加载相应的配置。 2. 在外设设置界面找到需要使用的串口(如USART1),开启它,并根据需求调整波特率、数据位数、停止位及校验方式等参数。 3. 开启串口的DMA功能。在该设备的配置界面上勾选“启用DMA”,并选择适合的数据传输通道和服务模式(单次或循环)。 4. 配置DMA控制器,进入相关界面后选定与特定外设关联的通道,并设定数据传输方向、大小和优先级等参数。 5. 生成初始化代码。STM32Cube MX会自动生成包含串口及DMA初始设置的HAL库源码文件(包括`.c` 和 `.h` 文件)。 6. 编写应用程序,利用HAL提供的API来启动并控制串口与DMA的数据传输过程,例如通过调用 `HAL_UART_Transmit_DMA()` 或者 `HAL_UART_Receive_DMA()` 等函数。 在名为“USART_DMA_TEST1”的示例项目中通常会展示如何使用STM32 HAL库进行串口DMA数据传输。这类测试代码一般包括初始化步骤、启动和中断处理机制等,通过学习这些内容可以帮助开发者更好地理解并应用实际项目的相关功能。 综上所述,结合了灵活的串口通信与高效的DMA技术使得STM32在大数据量快速传输方面具有显著优势;而借助于STM32Cube MX工具,则能够方便地设定所需参数以实现高效的数据交换方案。
  • STM32F103定时器触发ADC+DMA中断+
    优质
    本项目介绍如何在STM32F103系列微控制器上利用定时器触发ADC并通过DMA实现数据传输至双缓冲区,提高系统效率与响应速度。 STM32F103 使用定时器触发ADC,并通过DMA中断结合双缓冲实现数据采集。
  • STM32F103定时器触发ADC+DMA中断+
    优质
    本项目介绍如何在STM32F103微控制器中设置定时器触发ADC并通过DMA实现数据传输至双缓冲区,提高数据采集效率。 在使用STM32F103进行数据采集时,可以通过定时器触发ADC,并结合DMA中断以及双缓冲技术来实现高效的数据传输。这种方法能够确保数据的连续采集与处理,提高系统的实时性能。