Advertisement

车辆自动驾驶系统的纵向与横向运动综合管控

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了车辆自动驾驶系统中纵向和横向运动控制技术的融合方法,旨在提升驾驶安全性和舒适度。通过协调加减速及转向操作,实现高效、智能的道路行驶策略。 为了提升车辆自动驾驶系统的运动性能,本研究结合模糊逻辑与滑模控制理论设计了一种综合控制系统,用于协调管理前轮转向角度、发动机节气门开度、制动液压及主动横摆力矩等参数。该系统使车辆能够在期望速度下沿着理想道路轨迹行驶,并增强其在各种驾驶条件下的操控稳定性。仿真结果显示,这种纵向和横向运动的集成控制方法能够显著改善不同路况下的跟踪性能与动态响应能力,在自动驾驶应用中展现出有效性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究探讨了车辆自动驾驶系统中纵向和横向运动控制技术的融合方法,旨在提升驾驶安全性和舒适度。通过协调加减速及转向操作,实现高效、智能的道路行驶策略。 为了提升车辆自动驾驶系统的运动性能,本研究结合模糊逻辑与滑模控制理论设计了一种综合控制系统,用于协调管理前轮转向角度、发动机节气门开度、制动液压及主动横摆力矩等参数。该系统使车辆能够在期望速度下沿着理想道路轨迹行驶,并增强其在各种驾驶条件下的操控稳定性。仿真结果显示,这种纵向和横向运动的集成控制方法能够显著改善不同路况下的跟踪性能与动态响应能力,在自动驾驶应用中展现出有效性。
  • 技术:结PID和MPC精准制策略
    优质
    本文探讨了在电动车中应用PID与模型预测控制(MPC)相结合的方法,以实现车辆横向及纵向运动的精确操控,提升自动驾驶系统的性能。 在自动驾驶技术的研究中,本段落探讨了一种基于PID与MPC的电动车横向纵向高精度控制策略。其中,在车辆横纵向控制方面,纵向采用PID控制器来调整前轴左右车轮力矩以实现加减速操作;而横向则运用了模型预测控制(MPC)方法。 对于纵向方向上的速度调节,传统的油门刹车标定表中的PID控制器被改进为适用于电动车的版本。它通过精确地控制轮端力矩实现了车辆在纵向方向上的加速与减速功能。 至于横向运动控制,则是基于三自由度车辆动力学模型构建,并假设轮胎工作于线性区间内。结合MPC结构特性,利用状态轨迹法对非线性动力学模型进行线性化处理并离散采样,以实现精确的横向定位控制。车辆参考路径由一系列五次多项式构成的离散点组成。 实验条件设定为车辆初始速度70km/h,并在此条件下评估了系统的性能表现:结果显示在侧向位移跟踪及纵向车速跟随方面均表现出良好的效果,尽管后者存在一定的误差;同时,在质心侧偏角和四个车轮转角控制上也达到了预期目标。整个过程中,控制系统能够连续且稳定地工作。 该研究使用Matlab Simulink 2021a与Carsim 2019.0软件进行仿真验证,并提供了详细的视频演示以帮助初学者理解这一复杂技术的实际应用情况。如有兴趣深入探讨相关细节或寻求更多资源,请通过邮件方式联系作者。
  • 基于ROS仿真模型功能包
    优质
    本项目开发了一个基于ROS的自动驾驶车辆横纵向仿真模型功能包,旨在为开发者提供一个灵活、高效的平台,用于测试和验证自动驾驶算法。 通过车辆运动学递推建立了横纵向仿真模型,只需调整ROS话题接口即可快速实现车辆模型的仿真,适用于验证车辆横纵向控制算法。
  • 制算法
    优质
    本研究聚焦于开发高效的自动驾驶车辆纵向控制算法,旨在实现精确的速度调节、平稳的加减速以及优化燃油效率,以提升驾驶安全性和乘坐舒适度。 这篇论文探讨了智能驾驶领域中的纵向控制算法,并特别关注卡车类车辆的纵向控制方法。
  • 研发-算法-力学-力学
    优质
    专注于自动驾驶技术的研发工作,尤其在车辆动力学领域有着深厚的研究背景和实践经验。特别擅长于纵向动力学相关算法的设计与优化,致力于提升自动驾驶系统的性能和安全性。 辅助驾驶开发涉及算法设计与应用,其中车辆动力学是重要组成部分之一,特别是纵向动力学的研究。
  • 基于由度力学模型制:PIDMPC算法结,Matlab SimulinkCarsim仿真教学视频...
    优质
    本课程讲解了利用PID与MPC算法结合,基于车辆二自由度动力学模型进行自动驾驶横向及纵向控制的设计,并通过Matlab Simulink与Carsim软件实现仿真。适合对智能驾驶技术感兴趣的学员学习。 本研究基于车辆二自由度动力学模型探讨了自动驾驶中的横纵向控制策略,并结合PID与MPC算法进行融合设计。通过Matlab Simulink与Carsim仿真平台验证该方案的有效性,其中纵向采用百度Apollo的双环PID控制方法,而横向则参考其MPC控制技术实现。轨迹规划基于五次多项式函数形式。 研究结果表明,在车辆二自由度模型框架下进行S函数编程后,所设计的控制系统在侧向位移和纵向位移跟踪方面表现出良好的效果;同时,对于车速跟随也有不错的性能表现,尽管存在一定的误差。 实验采用的软件版本为Matlab Simulink 2021a与Carsim 2019.0。此外还提供了详细的仿真演示视频教程以帮助初学者理解整个控制策略的设计流程及实现细节,并附有相关参考资料供进一步研究使用。
  • 基于力学误差模型制——复现Apollo MPC算法
    优质
    本文探讨了基于动力学误差模型的自动驾驶技术,重点在于实现车辆横纵向运动的精准控制,并详细复现了Apollo平台中的MPC(模型预测控制)算法。通过优化该算法,提升了自动驾驶系统的稳定性和响应速度,为复杂驾驶环境下的安全行车提供了有力保障。 本段落介绍了基于动力学误差模型的自动驾驶横纵向耦合控制方法,并使用了Apollo平台中的横向和纵向控制系统作为参考。该系统采用MPC(模型预测控制)算法,在一个控制器中同时处理横向与纵向,实现两者之间的协同控制。通过MATLAB与Simulink联合仿真进行测试验证。 在纵向控制方面,已经完成了油门刹车的标定工作,并能够跟踪五次多项式换道轨迹,效果良好。本段落包含三套代码:两套采用面向对象编程方式编写(一套仅对控制量施加约束条件;另一套则同时限制了控制量及其变化率),还有一套使用的是传统的面向过程编程方法。 以上内容构成了一个完整的横纵向耦合控制系统设计与实现方案,为自动驾驶车辆的精确路径跟踪提供了技术支持。
  • ACC模型力学仿真_SIMULINK_制_分析
    优质
    本研究运用SIMULINK平台开发了ACC(自适应巡航控制)模型,专注于车辆纵向动力学仿真的精确建模与分析。通过深入探讨纵向控制系统在不同驾驶条件下的性能,该研究为优化车辆动态响应提供了理论依据和技术支持。 车辆纵向动力学是汽车工程中的一个关键研究领域,它主要关注汽车在直线行驶时的速度、加速度和位移等运动特性。在这个场景下,自动巡航控制系统(ACC)和电子稳定程序(ESP)都是车辆纵向动态控制的重要组成部分。本段落将详细讨论这两个系统以及它们在Simulink环境中的建模和仿真。 自动巡航控制系统(ACC)是一种先进的驾驶辅助系统,它允许车辆在设定的速度下自动行驶,并能根据前方车辆的距离和速度进行智能调整,保持安全的跟车距离。在Simulink中构建ACC模型时,需要考虑车辆的动力系统、传感器数据处理(如雷达或摄像头)、控制算法(例如PID控制器)以及执行机构(如油门和刹车)。该模型应能够模拟车辆的加速、减速和平稳行驶状态,并考虑到驾驶员可能进行的操作。 电子稳定程序(ESP)则是为了确保车辆在各种行驶条件下的稳定性,通过监测转向角、横向加速度及轮速等参数,对制动与动力分配进行实时调整以防止侧滑和失控。构建Simulink中的ESP模型需要包含横摆动力学模型、传感器数据处理模块、控制策略(如滑移率控制)以及执行机构模型(例如ABS和TCS)。 在Simulink中创建的纵向动力学模型文件可能包括了车辆质量、空气阻力、滚动阻力、驱动力及制动力等物理因素,以及ACC与ESP系统的算法。用户可以通过图形化界面配置参数,在不同工况下运行仿真并观察性能表现,如加速度响应和跟随距离控制。 实际应用中,Simulink中的这些模型对于分析车辆动态性能、设计优化控制器至关重要。工程师可以利用仿真结果评估改进策略以确保行车的安全性和舒适性。此外,这种建模方法还适用于教学与研究领域,帮助学生及研究人员理解汽车动力学的基本原理和控制系统的设计思路。 提供的ACC和ESP模型在Simulink中的实现为车辆纵向动力学的研究提供了强大工具。通过深入分析这些仿真模型,可以更好地理解和优化车辆动态性能,并推动智能交通系统的发展。
  • 由度模型.zip_由度模型_分析
    优质
    本资源提供车辆七自由度模型,涵盖横向和纵向动态特性分析,适用于研究车辆运动控制、稳定性评估等场景。 本段落件提供了一个七自由度车辆模型,涵盖了车辆的纵向、横向和侧向自由度,并附有相关的数学公式。
  • 基于MatlabMPC制算法代码
    优质
    本项目提供了一种基于Matlab环境下的自动驾驶横向模型预测控制(MPC)算法实现。通过优化路径跟踪性能,该代码为车辆自主导航系统开发提供了有效工具。 根据Apollo开源框架中的MPC算法,将其改写成MATLAB的m函数,用于自动驾驶横向控制的仿真,并指导自动驾驶控制算法的开发。代码注释应清晰易懂。