Advertisement

STM32L073通过DMA方式读取ADC多通道数据并进行串口传输

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目介绍如何使用STM32L073微控制器通过DMA技术高效地从多个模拟输入端口采集数据,并利用串行通信接口将采集到的数据传输出去。 本程序使用HAL库实现了STM32L073通过DMA方式获取三通道ADC转换数据的功能,并在main函数之外完成了此功能的实现。此外,还采用了串口DMA方式发送数据。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32L073DMAADC
    优质
    本项目介绍如何使用STM32L073微控制器通过DMA技术高效地从多个模拟输入端口采集数据,并利用串行通信接口将采集到的数据传输出去。 本程序使用HAL库实现了STM32L073通过DMA方式获取三通道ADC转换数据的功能,并在main函数之外完成了此功能的实现。此外,还采用了串口DMA方式发送数据。
  • STM32DMA实时六路ADC(蓝牙模块)
    优质
    本项目利用STM32微控制器结合DMA技术,实现对六个模拟通道的数据进行高速采集,并通过蓝牙无线通信模块将数据实时发送至远程设备。 使用HAL库,在STM32T上通过DMA实时读取6路ADC数据,并通过串口(蓝牙模块)发送。其中蓝牙的发送频率可以通过无线方式进行编程控制。
  • STM32F103的16ADCDMA
    优质
    本项目详细介绍如何利用STM32F103微控制器进行16通道模拟信号采集,并使用DMA技术实现高效的数据传输。 使用STM32F103单片机通过ADC1采集16个通道的数据,并利用DMA传输这些数据,最后通过串口打印出来。
  • STM32F407 DMA ADC 采样显示
    优质
    本项目介绍如何使用STM32F407微控制器进行ADC采样,并利用DMA技术实现数据高效传输至外部存储器,同时将采集到的数据通过串口实时输出显示。 基于正点原子的例程进行了修改,在STM32F407上实现了通过串口显示ADC采样并通过DMA传输的功能。该程序附带了STM32的中英文说明书。
  • ADC-DMA.zip
    优质
    本资源包提供一个多通道模拟数字转换器(ADC)配合直接存储器访问(DMA)技术进行数据读取的示例代码和文档,适用于需要高效采集多个传感器信号的应用场景。 在嵌入式系统开发中,ADC(Analog-to-Digital Converter)是一种重要的硬件组件,它能够将连续的模拟信号转换为离散的数字信号,以便微控制器进行处理。STM32是基于ARM Cortex-M内核的微控制器系列,在各种嵌入式设计中广泛应用。本教程详细讲解如何在STM32中利用ADC的多通道功能,并结合DMA(Direct Memory Access)技术提高数据读取效率。 **ADC多通道** STM32中的ADC支持多个输入通道,每个通道可以连接到不同的模拟信号源。通过配置ADC的通道选择,我们可以同时或独立地从多个模拟信号源采集数据。这在需要监测多种传感器或者不同信号时非常有用。例如,在一个嵌入式系统中可能需要测量温度、湿度和光照等多个环境参数,这时就需要利用ADC的多通道功能。 **DMA读取** DMA是一种高速的数据传输机制,它允许外设直接与内存交换数据而无需CPU干预。在使用ADC的情况下,当启用DMA时,完成一次转换后,结果会自动发送到预先设定的内存地址而不是通过中断通知CPU。这样可以减少CPU负担,并使其能够专注于其他任务。 **配置ADC多通道和DMA** 1. **初始化ADC**: 需要设置采样时间、分辨率等参数并激活指定的输入通道。 2. **配置DMA**: 选择合适的传输方向(从外设到内存)、大小以及传输完成后的中断标志。 3. **连接ADC和DMA**:当转换完成后,触发DMA传输以将数据直接写入内存中。 4. **启动转换**:在多通道模式下设置为连续或单次转换,根据应用场景决定具体方式。 5. **处理DMA中断**: 在每次完成数据传输后通过服务程序进行必要的读取和存储操作。 6. **安全考虑**: 需要合理规划内存空间以防止溢出或其他冲突问题。 **实际应用示例** 例如,在环境监测系统中,可以配置ADC的三个通道分别连接到温度、湿度以及光照传感器。当启用DMA后,每次转换完成后数据会自动存入内存,并由CPU在中断服务程序中处理这些读取的数据。 通过使用ADC多通道配合DMA技术能够显著提升STM32系统的性能和效率,降低CPU负载并优化其设计能力。
  • ADC采集DAC
    优质
    本项目设计了一种通过ADC模块采集模拟信号并转化为数字信号,随后利用DAC模块将数字信号还原为接近原样的模拟信号,并实现数据通过串行通信接口进行高效传输的技术方案。 使用了ADC、DAC、DMA以及串口功能,并且采用了多通道设计,同时利用了两个独立的ADC模块。此外,还应用了通用定时器的PWM模式进行操作。
  • STM32F1032
    优质
    本项目详细介绍如何使用STM32F103系列微控制器通过串口2实现高效的数据发送与接收,适用于嵌入式系统开发和通信应用。 STM32F103通过串口2进行数据的发送与接收操作。每隔300毫秒发送一个字符,并且如果接收到数据,则将该数据原路发回出去。波特率为9600,无校验位和一位停止位。
  • STM32 DMA1和2收发
    优质
    本项目介绍如何利用STM32微控制器的DMA功能,在串口1和串口2之间实现高效的数据传输,无需CPU干预。 使用STM32的串口1和串口2通过DMA方式进行数据收发。采用定时器定期查询接收到的数据,并在串口中断发生(即数据空闲中断)时,将数据拷贝到缓冲区供其他程序处理。这种方法可以接收任意大小的数据包并且占用CPU时间极少,在波特率较高时效果尤为显著。
  • 51单片机MPU6050
    优质
    本项目介绍如何使用51单片机通过I2C接口读取 MPU6050六轴传感器的数据,并将这些数据通过串口发送,实现数据的实时传输和监测。 使用MPU6050传感器与51单片机结合,在KEIL4开发环境中读取六轴数据并通过串口输出。该过程涉及利用MPU6050角度传感器实现对加速度和陀螺仪信息的采集,并在51单片机上进行相应的处理,最终将获取的数据通过串行通信接口发送出去。
  • 利用STM32G474的HRTIM触发ADC采样,DMA与显示,以实现PWM中点采样避开开关噪声
    优质
    本项目基于STM32G474微控制器,采用高级定时器(HRTIM)控制多路模拟信号的精确采样。利用ADC结合DMA技术高效采集数据,并通过串口实时传输与显示,确保在PWM模式下精准避开开关噪声干扰,实现高质量的数据捕获和处理。 本项目使用STM32G474并通过HRTIM触发多路ADC采样,并利用DMA传输数据,最后通过串口打印显示结果。此方法用于实现PWM中间时刻的采样,以避免开关噪声的影响。整个工程采用CUBEIDE进行配置和编译调试工作,所使用的硬件平台是STM32G474官方开发板NUCLEO-G474RE。