Advertisement

STM32F3利用ADC与DMA进行数据传输

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目介绍了如何使用STM32F3微控制器结合ADC(模数转换器)和DMA(直接内存访问)技术实现高效的数据采集与传输过程,适用于嵌入式系统开发。 在STM32F3系列微控制器上使用ADC模块对连接的外部电位器输入电压进行采样,并通过DMA模式传输转换结果。然后对每8次采样的数据取平均值,以实现滤波处理。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32F3ADCDMA
    优质
    本项目介绍了如何使用STM32F3微控制器结合ADC(模数转换器)和DMA(直接内存访问)技术实现高效的数据采集与传输过程,适用于嵌入式系统开发。 在STM32F3系列微控制器上使用ADC模块对连接的外部电位器输入电压进行采样,并通过DMA模式传输转换结果。然后对每8次采样的数据取平均值,以实现滤波处理。
  • STM32F3 使三个SDADC和DMA
    优质
    本项目介绍如何使用STM32F3微控制器及其内置的三个同步采样多通道模数转换器(SDADC)与直接存储器访问(DMA)技术,高效地采集模拟信号并实现快速、低开销的数据传输。 该资源基于stm32F373开发,主要分享使用cubemx配置sdadc之后的程序例程。目前遇到的一个问题是上电后SDADC的初始值可能不一致。三个SDADC同时使用,并通过DMA进行数据传输。
  • STM32 使ADC和USART DMA
    优质
    本项目介绍如何使用STM32微控制器结合ADC(模数转换器)与USART DMA技术实现高效的数据采集及传输。 STM32是一款基于ARM Cortex-M内核的微控制器,在嵌入式系统设计中有广泛应用。当ADC(模数转换器)与USART(通用同步异步收发传输器)配合DMA(直接内存访问)进行数据处理时,可以实现高效、低延迟的数据传输,尤其适合实时性要求高的应用场景。 首先,STM32的ADC模块将模拟信号转化为数字信号供微控制器使用。该模块支持多通道配置、多种采样率和分辨率,并具备自动扫描功能。在配置过程中,需要设定采样时间、序列以及触发源等参数,并选择合适的电压参考源。 其次,USART是用于设备间数据交换的串行通信接口,在STM32中支持全双工模式即同时发送与接收数据的能力。它提供了多种帧格式、波特率和奇偶校验选项以适应不同的通信协议和应用场景。配置时需要设置波特率、停止位、校验位以及数据位等参数。 当ADC与USART结合使用,特别是在处理大量数据或高速传输需求的情况下,DMA的作用尤为关键。作为一种硬件机制,DMA可以直接在内存和外设之间进行数据传送,并且能够减轻CPU的负担。STM32中的DMA控制器支持多种传输模式包括半双工、全双工及环形缓冲区等。 配置ADC与USART的DMA传输时需要执行以下步骤: 1. 初始化DMA:选择适当的通道,如使用DMA1 Channel 1用于ADC1的数据传输,并设置其方向(从外设到内存)、优先级和循环模式。 2. 配置ADC:开启ADC功能并设定所需的通道、转换顺序及触发源。可以将启动转换的事件配置为由DMA请求触发,例如通过EXTI线或定时器事件。 3. 初始化USART:设置波特率、帧格式以及接收中断,并启用USART的DMA接收特性选择相应的DMA通道。 4. 连接ADC与DMA:使每次完成转换后都会向DMA发出请求,将ADC的转换结束中断连接到DMA请求上。 5. 链接DMA和USART:将目标寄存器设置为USART的数据发送位置以自动传输数据至串行通信接口中进行传送。 6. 启动DMA与USART:开启两者之后,整个过程会自行运作无需CPU介入。 实际应用中还需考虑中断处理机制如ADC转换完成中断以及USART接收完成中断用于错误状态和更新传输状态的管理。此外为避免数据丢失可以设置DMA半缓冲或全缓冲模式及USART流控功能来控制数据流量。 综上所述,通过利用STM32中的ADC、USART与DMA技术组合,在大量模拟信号采集和高速串行通信场景中能提供高效的解决方案并减少CPU处理时间从而提升系统整体性能。掌握这些配置技巧有助于灵活应对各种复杂的数据传输需求。
  • STM32F407DMA串口1的
    优质
    本项目介绍如何在STM32F407微控制器中使用DMA技术实现高效、低开销的串口1数据传输方法。 函数实现了STM32F407使用串口1进行数据收发:当接收到数据时,立即返回原数据。在stm32f4xx_it.c文件中需要添加中断函数DMA2_Stream7_IRQFuc()和USART1_IRQFuc()。
  • STM32CubeMX实现ADCDMA
    优质
    本教程介绍如何使用STM32CubeMX配置STM32微控制器的ADC并通过DMA进行数据传输,简化代码开发流程。 基于STM32CubeMX的ADC_DMA传输可以分为多路和单路两种方式。这种配置允许用户根据实际需求灵活选择数据采集模式,从而提高系统的效率和灵活性。在使用过程中,可以通过设置DMA来实现ADC采样的连续性和高效性,而无需CPU频繁介入处理每一个样本的数据读取操作。对于需要同时监测多个传感器信号的应用场景来说,多路传输能够显著简化软件设计并减少资源占用;而对于只需要单一通道数据采集的任务,则可以采用单路配置以降低系统复杂度和成本。
  • STM32F4 使DMA方式
    优质
    本简介探讨了在STM32F4微控制器中采用DMA技术进行高效数据传输的方法与技巧,旨在减少CPU负载并提高系统性能。 本例程在官方STM32F4例程的基础上增加了使用滴答定时器对CPU搬运数据与DMA方式传送数据进行比对的功能。结果表明,DMA方式传输速度更快,并且在传输过程中,CPU处于空闲状态,从而大大减少了CPU的负担。
  • STM32-F407配置DMA
    优质
    本简介介绍如何在STM32-F407微控制器上配置和使用DMA功能来高效地实现外设与存储器之间的数据传输。 本段落介绍了如何在STM32-F407芯片上使用DMA外设进行数据搬运,并结合串口传输技术实现高效的数据通信。通过利用DMA的功能,可以减轻CPU的负担,在后台自动完成大量数据的读写操作;而串口则用于将处理后的数据发送到外部设备或显示终端。这种组合方式不仅提高了系统的响应速度和稳定性,还简化了编程复杂度,使得开发者能够更专注于业务逻辑实现而非底层硬件细节管理。
  • 3.13 NFC
    优质
    本章节探讨了利用近场通讯(NFC)技术实现便捷高效的数据传输方法,包括其工作原理、应用场景及开发实践。 有一个应用程序,需要通过最少的设置实现两台Android设备间小数据包的快速传输。
  • STM32F429 使 DMA 方式 USART .rar
    优质
    本资源提供了使用STM32F429微控制器通过DMA方式实现USART数据传输的详细介绍与示例代码,适用于嵌入式系统开发人员学习和参考。 天下文章一般抄,只能靠自己实践。本代码适用于STM32F429,使用HAL库版本为STM32Cube_FW_F4_V1.11.0。精简了其他不必要的程序段,仅保留c和h文件,可以直接添加并使用,已测试通过。
  • STM32F10XDMA方式ADC操作
    优质
    本篇文章详细介绍了如何在STM32F10X微控制器中使用直接存储器访问(DMA)技术进行模数转换(ADC)操作的方法和步骤,提高数据传输效率。 STM32F10X系列微控制器基于ARM Cortex-M3内核,是一款高性能的处理器,并且集成了高级模拟功能如ADC(模数转换器)。在许多嵌入式应用中,例如传感器数据采集、信号处理等场景下,ADC起着关键作用。使用DMA与STM32中的ADC配合工作可以实现高效的数据传输,在减轻CPU负担的同时提高系统性能。 理解ADC的基本原理至关重要:它将模拟信号转化为数字信号。STM32F10X的ADC支持多通道输入,并且可以根据需要选择不同的采样率和分辨率进行配置,包括设置采样时间、转换序列以及通道优先级等参数。在DMA模式下,每次完成一次转换后,ADC会自动触发DMA请求,由DMA控制器接管数据传输过程而无需CPU介入。 STM32中提供了多种工作模式给DMA使用,比如单块传输、循环缓冲和半双工模式等,在与ADC结合的应用场景里通常采用循环缓冲方式。这样可以使得连续的转换结果直接写入内存中的一个固定大小的缓存区,从而减少中断响应延迟,并且允许CPU在适当的时候一次性读取整个缓冲区的数据。 为了实现STM32F10X中ADC和DMA之间的协同工作,需要执行以下步骤: 1. 配置ADC:选择适当的通道、采样时间、转换序列以及分辨率等参数并开启DMA请求。 2. 设置DMA:选择合适的流与通道,并配置传输方向(从外设到内存)、数据大小、源地址、目标地址及宽度。 3. 关联ADC和DMA:将特定的DMA流连接至ADC的DMA请求,确保在转换完成后能正确触发DMA传输操作。 4. 启动ADC转换:根据应用需求使用软件或外部事件来启动转换过程。 5. 安全读取数据:需要避免CPU与DMA同时访问相同内存区域。可以在完成DMA传输后设置标志位以指示可以安全地从缓冲区中读取数据。 `adc.c`和`adc.h`文件通常包含ADC以及DMA的配置及操作函数,前者实现具体的初始化代码及相关功能,后者定义了这些函数原型和常量供其他模块调用。在实际项目开发过程中还需考虑错误处理、中断服务程序(ISR)以响应DMA传输完成事件,并进行适当的电源管理确保设备能在低功耗模式下正常运行。 总的来说,STM32F10X的ADC与DMA结合使用能够高效地实现模拟信号数字化并减少CPU资源占用,从而提升系统的实时性和可靠性。通过掌握STM32中关于这两者的配置技巧可以设计出更加稳定高效的嵌入式系统解决方案。