Advertisement

Matlab代码ABS-多任务深度网络:在医学图像语义分割中应用多任务学习方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种基于MATLAB的多任务深度学习框架,用于改进医学图像中的语义分割效果。通过共享特征和独立解码器结构,该模型能够同时执行多个相关但不同目标的任务,从而提高分割精度并减少所需的训练数据量。 MATLAB代码abs多任务深度网络基于多任务深度学习的医学图像语义分割方法(EMBC2019、MICCAIW-MLMI2019)依赖关系套餐包括火炬TensorboardX、OpenCV以及麻木的tqdm,这些包在requirements.txt文件中可以找到详尽列表。使用以下命令安装相同的:condacreate--name--filerequirements.txt。 预处理轮廓和距离图是预先计算的结果,并且可以从二进制掩码中获得。目录结构如下: 训练和测试文件夹应包含以下结构: ├── contour │ ├── 1.png │ ├── 2.png │ ... ├── dist_contour │ ├── 1.mat │ ├── 2.mat │ ... ├── dist_mask │ ├── 1.mat │ ├── 2.mat │ ... ├── dist_signed │ ├── 1.mat │ ├── 2.mat │ ... └── image ├── 1.jpg ├── 2.jpg ... └── mask ├── 1.png

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MatlabABS-
    优质
    本研究提出了一种基于MATLAB的多任务深度学习框架,用于改进医学图像中的语义分割效果。通过共享特征和独立解码器结构,该模型能够同时执行多个相关但不同目标的任务,从而提高分割精度并减少所需的训练数据量。 MATLAB代码abs多任务深度网络基于多任务深度学习的医学图像语义分割方法(EMBC2019、MICCAIW-MLMI2019)依赖关系套餐包括火炬TensorboardX、OpenCV以及麻木的tqdm,这些包在requirements.txt文件中可以找到详尽列表。使用以下命令安装相同的:condacreate--name--filerequirements.txt。 预处理轮廓和距离图是预先计算的结果,并且可以从二进制掩码中获得。目录结构如下: 训练和测试文件夹应包含以下结构: ├── contour │ ├── 1.png │ ├── 2.png │ ... ├── dist_contour │ ├── 1.mat │ ├── 2.mat │ ... ├── dist_mask │ ├── 1.mat │ ├── 2.mat │ ... ├── dist_signed │ ├── 1.mat │ ├── 2.mat │ ... └── image ├── 1.jpg ├── 2.jpg ... └── mask ├── 1.png
  • 功能
    优质
    多任务学习(MTL)通过同时学习多个相关任务来提高模型性能和泛化能力。本文探讨了如何利用多任务框架进行功能层面的学习与优化。 多任务功能学习是一种同时处理多个相关任务的方法,这些任务共享一组共同的潜在特征。该方法通过规范化任务矩阵来实现,并且使用跟踪规范进行正则化是此框架的一个特例。在实际应用中,例如个性化推荐系统中的产品对消费者的匹配就是一个典型的应用场景。 这种方法已经在一些学术论文中有详细的介绍和讨论。值得注意的是,这种学习方式可以结合非线性核函数一起使用,而无需显式地定义特征空间。此外,在进行Gram-Schmidt或Cholesky分解预处理后,可以在Gram矩阵上运行相应的代码(详见文中第5节)。
  • 》综述性论文
    优质
    本文为一篇综述性论文,全面探讨了深度多任务学习领域的最新进展和挑战,总结了多种模型架构及其应用实例,并展望未来研究方向。 尽管在深度学习领域取得了最近的进展,大多数方法仍然采用类似“筒仓”的解决方案,即专注于孤立地为每个单独的任务训练一个独立的神经网络。然而,在许多现实问题中需要多模态方法,因此需要能够处理多个任务的模型。多任务学习(MTL)旨在通过利用跨不同任务的信息来提高模型的泛化能力。
  • BERT环境的BERT模型
    优质
    本文探讨了在多任务环境中应用预训练语言模型BERT的方法和技术,通过优化其多任务学习能力以提升各种自然语言处理任务的表现。 从0.4.0版本开始,tf版本必须大于等于2.1。安装方法为:pip install bert-multitask-learning。 这个项目使用变压器(基于拥抱面部变压器)进行多模式多任务学习。为什么需要它呢?因为在原始的BERT代码中,多任务学习或多GPU训练都不可行,并且该项目最初是为了命名实体识别(NER),而在原始BERT代码中没有有效的脚本支持这一功能。 总之,与原始bert仓库相比,此项目具有以下改进: - 多模式多任务学习:这是重写大部分代码的主要原因。 - 支持多GPU训练 - 序列标记(例如NER)和Encoder-Decoder Seq2Seq(带变压器解码器)。
  • 肝脏
    优质
    本文探讨了深度学习技术在肝脏自动分割领域的最新进展和挑战,并详细介绍了其在医学影像分析中的实际应用。 肝分割项目的目的是通过计算机视觉技术,在患者进行扫描的过程中自动描绘肝脏轮廓。该项目采用了一种基于研究论文提出的方法,并将其应用于对肝脏图像的分割任务中。数据集以NifTi格式提供,包含20个三维医学检查的数据样本,每个样本都包括原始影像及其对应的肝脏区域掩模。 我们使用nibabel库来读取这些关联的图像和蒙版文件。在模型构建方面,训练了一个U-net架构——一种完全卷积网络。这种结构的特点是在传统的收缩路径中添加了上采样操作层而非池化层,从而使得网络能够同时学习到上下文信息(通过契约路径)以及精确定位细节(借助扩展路径)。由于跳过连接的存在,来自较低层次的上下文信息得以传递至更高分辨率层级。因此,整个模型可以输出与输入图像大小一致的结果。
  • MATLAB系统聚类与-MatMTL
    优质
    MatMTL是一款基于MATLAB开发的工具包,集成了系统聚类算法和多任务学习框架,旨在促进复杂数据分析和建模中的模式识别与知识发现。 Matlab多任务学习包自述文件 该代码由Ciliberto、Carlo、Tomaso Poggio 和 Lorenzo Rosasco 在2015年国际机器学习大会(ICML)上提出并实施。 ### 安装与使用 只需将 `addpath(learning-machine)` 添加到您的MATLAB路径中。`main.m` 文件提供了如何使用该包的示例。 ### 包概述 我们的工作旨在为多任务学习提供一个通用凸框架,一方面可以涵盖先前提出的几种方法(如Argyriou08、Jacob09、Zhang10和Dinuzzo11等),另一方面提供了一种解决此类问题的一般性元块坐标策略,并保证收敛到全局最小值。该存储库中的代码实现了某些多任务设置下的这种元策略。软件包的设计目的是即插即用,但尚未准备好发布且文档不全。特别是可以使用参数选择例程,但是完全没有相关文档。 参考文献: [1] Argyriou, Andreas, Theodoros Evgeniou 和 Massimiliano Pontil.
  • Python实现的经典.zip
    优质
    本资源提供了一个使用Python编写的经典医学图像分割深度学习模型的完整实现。包含详细的注释和示例数据集,适用于初学者快速入门医学影像分析领域。 在医疗领域,图像分割是一项关键技术,它能够帮助医生和研究人员精确地识别并分析医学影像中的特定区域,如肿瘤、血管或器官。本资源提供的是基于Python的深度学习框架来实现用于医学图像分割的经典网络模型,并深入探讨这些模型的工作原理、实施方法及其实际应用价值。 首先需要了解深度学习在网络图像分割中所起的作用。特别是卷积神经网络(CNN),已经在计算机视觉任务中展现了强大的性能,它能够自动从数据中提取特征并进行像素级别的分类,以区分图像的不同部分。 1. **U-Net 网络**:这是一种非常流行的医学影像分割模型,尤其适用于处理小样本的数据集。它的架构由编码器(encoder)和解码器(decoder)两大部分组成:编码器通过多层卷积与池化操作提取特征信息;而解码器则通过上采样及跳过连接将高分辨率的信息与低级别特征相结合,从而实现精确的像素级预测。 2. **FCN (全卷积网络)**:这是第一个采用全卷积技术进行图像分割的模型。它摒弃了传统的完全连结层设计,使得该网络可以接受任意大小输入影像,并通过最后的上采样操作将特征图恢复至原始尺寸,从而实现像素级别的分类。 3. **Mask R-CNN**:这是一种基于 Faster R-CNN 的模型,引入了实例分割的概念。它不仅能识别出图像中的物体类别信息,还能对每个对象进行精确到像素级的分割处理。Mask R-CNN 使用 RoIAlign 层来处理不同尺度和形状的对象,从而提高了分割精度。 4. **SegNet**:与 U-Net 类似,这是一种基于编码器—解码器架构的网络模型。但它使用的是编码部分池化操作中的索引信息来进行上采样过程,而不是通过跳跃连接的方式进行特征融合。这种设计减少了参数数量但可能在一定程度上影响了分割精度。 5. **DeepLab 系列**:DeepLab 家族包括 DeepLabv1, v2 和 v3+等网络模型,它们利用空洞卷积(atrous convolution)来扩大感受野,从而可以在不增加计算量的情况下捕捉到更大尺度的语义信息。这对于进行语义分割任务特别有效。 在 Python 中实现这些模型通常会使用深度学习库如 TensorFlow、Keras 或 PyTorch 等。这包括定义网络结构、选择适当的损失函数(例如交叉熵)、配置优化器参数(比如 Adam)以及训练和验证过程的设置等步骤。此外,数据预处理、数据集划分、保存与评估模型也是实现过程中必不可少的部分。 在实际应用中,这些模型可以用于多种医学图像分析任务,如 CT 或 MRI 影像中的肿瘤检测、眼底影像中的血管分割及皮肤病变识别等。然而需要注意的是,在医疗领域内使用此类技术时必须遵循严格的伦理和法规标准以确保数据的安全性和隐私保护措施到位。 此资源提供了 Python 实现的用于医学图像分割的经典深度学习网络模型,涵盖了从基础 FCN 到更复杂的 U-Net 和 Mask R-CNN 等。通过理解和应用这些模型,开发者可以为医疗诊断与研究提供更为精准有效的解决方案。
  • (一)
    优质
    本系列文章探讨了深度学习技术在医学图像分析领域的最新进展与实际应用,旨在为医疗诊断和治疗提供更精确、高效的解决方案。第一部分主要介绍基本概念和技术背景。 近年来,深度学习技术一直引领科研前沿。通过这一技术,我们可以对图像和视频进行分析,并将其应用到各种设备上,如自动驾驶汽车、无人驾驶飞机等等。 最近发表的一篇研究论文《ANeuralAlgorithmofArtisticStyle》介绍了一种方法:从艺术家的作品中提取风格与气质并转移到一幅新图象上去,从而创造出新的艺术作品。此外,《GenerativeAdversarialNetworks》和《WassersteinGAN》等其他一些论文也已经为开发能够生成类似输入数据的新模型铺平了道路。“半监督学习”领域的研究也因此得到了推进,并预示着未来“无监督学习”的发展将会更加顺利。
  • DMTC:聚类,于无监督
    优质
    DMTC(Deep Multi-Task Clustering)是一种先进的无监督学习技术,专为图像分类设计。它通过同时执行多种相关任务来提高模型在复杂数据集上的性能和鲁棒性,从而实现更精确的聚类结果。 DMTC(深度多任务聚类)能够实现无监督的图像分类。
  • 关于的算综述
    优质
    本论文全面回顾了深度学习技术在图像语义分割领域的应用与发展,分析了各类经典与前沿算法,为研究者提供理论参考和实践指导。 随着自动驾驶及虚拟现实技术的发展,图像语义分割方法越来越受到计算机视觉和机器学习研究人员的关注。本段落首先介绍了图像语义分割领域的常用术语以及相关背景概念,并讨论了几种经典的深度学习算法,如全卷积神经网络(FCN)和Deeplab等。最后,文章总结了当前图像语义分割算法的应用情况,并展望未来的研究方向。