资源下载
博客文章
资源下载
联系我们
登录
我的钱包
下载历史
上传资源
退出登录
Open main menu
Close modal
是否确定退出登录?
确定
取消
矩阵的特征值分解被用于处理复数矩阵。
None
None
5星
浏览量: 0
大小:None
文件类型:None
立即下载
简介:
通过利用GSL科学计算函数库,对复数矩阵进行特征值分解,显著地缩短了特征值分解所消耗的时间。
全部评论 (
0
)
还没有任何评论哟~
客服
复
数
矩
阵
的
特
征
值
分
解
方法
优质
本文探讨了复数矩阵的特征值分解理论与算法,介绍了几种高效的求解方法及其在工程实践中的应用价值。 复数矩阵的特征值分解通过使用GSL科学计算函数库,在很大程度上减少了特征值分解的时间。
利
用
QR
分
解
计算
矩
阵
的
特
征
值
优质
本文探讨了通过QR算法求解任意复数或实数方阵特征值的方法。介绍了QR分解的基本原理及其在迭代过程中收敛至对角矩阵的应用,进而简化特征值问题的求解过程。 MATLAB编程使用QR分解方法可以求解实矩阵和复矩阵的特征值。
求
解
矩
阵
的
特
征
值
与
特
征
向量
优质
本文章讲解了如何计算矩阵的特征值和特征向量的方法及步骤,并探讨其在数学领域的应用价值。 不需要通过求解方程来获得特征值和特征向量。
对称
特
征
值
分
解
与SVD:适
用
于
对称
矩
阵
的
特
征
分
解
及任意
矩
阵
的
奇异
值
分
解
-MATLAB开发
优质
本项目提供MATLAB函数,实现对称矩阵的特征值分解和任意矩阵的奇异值分解(SVD),便于深入理解线性代数中的核心概念并应用于实际问题。 此提交包含用于通过基于频谱分而治之的高效稳定算法计算对称矩阵 (QDWHEIG.M) 的特征值分解和奇异值分解 (QDWHSVD.M) 的函数。 计算结果通常比 MATLAB 内置函数 EIG.M 和 SVD.M 给出的结果更准确。 函数 TEST.M 运行代码的简单测试。 有关底层算法的详细信息可以在 Y. Nakatsukasa 和 NJ Higham 的论文《用于对称特征值分解和 SVD 的稳定有效的谱分治算法》中找到,该论文于2012年5月发布。
使
用
MATLAB
的
eig函
数
求
解
矩
阵
特
征
值
、
特
征
向量及实现
矩
阵
对角化
优质
本简介介绍了如何运用MATLAB中的eig函数来计算矩阵的特征值与特征向量,并探讨了通过这些工具进行矩阵对角化的具体方法。 本段落档详细介绍了如何使用MATLAB中的eig函数来计算矩阵的特征值、特征向量以及进行矩阵对角化。
利
用
QR
分
解
计算
矩
阵
的
特
征
值
与
特
征
向量
优质
本文介绍了运用QR算法求解任意复数方阵特征值及特征向量的方法,通过迭代过程实现矩阵对角化。 颜庆津版数值分析编程作业使用C语言(少量C++语法)实现矩阵的QR分解法迭代求解全部复数格式特征值。首先对矩阵进行拟上三角化处理,然后通过迭代方法计算出所有特征值,并利用列主元素高斯消元法求得实特征值对应的特征向量。
利
用
MATLAB计算
矩
阵
特
征
值
优质
本教程介绍如何使用MATLAB软件高效地计算各类矩阵的特征值,涵盖基本函数与高级技巧。适合初学者和进阶用户参考学习。 MATLAB求解矩阵特征值的部分源码如下: ```matlab clear; clc; A1 = [1 5 3 1/3 1/5 1 1 1/3 1/3 1 1 1/3 3 3 3 1]; A2 = [1 1/2 1/5 2 1 1/3 5 3 1]; ```
利
用
QR
分
解
计算
矩
阵
的
所有
特
征
值
优质
本文介绍了如何运用QR算法进行矩阵的QR分解,并通过迭代过程精确地求解出任意大小矩阵的所有特征值。 将一个矩阵转化为上Hessenberg矩阵后,再使用QR分解求解该矩阵的全部特征值。
MATLAB程序
分
享:求
解
矩
阵
特
征
值
的
源代码-MATLAB求
解
矩
阵
特
征
值
源程序代码.rar
优质
本资源提供一份用于求解矩阵特征值的MATLAB源代码。通过该代码,用户能够方便地计算任意给定矩阵的所有特征值,适用于科研、工程等领域的数学建模与分析工作。 分享MATLAB程序用于求解矩阵的特征值:源代码见附件《MATLAB求解矩阵的特征值 源程序代码.rar》。如果下载遇到问题,请联系我进行帮助。
利
用
QR
分
解
法计算
矩
阵
的
特
征
值
和
特
征
向量
优质
本研究探讨了采用QR算法求解任意方阵特征值与特征向量的有效性,提供了一种数值稳定且高效的计算方法。 设计思想是使用带双步位移的QR分解法求解10x10矩阵A的所有特征值。首先,在计算出矩阵A之后,利用Householder矩阵对它进行相似变换以化简为拟上三角形式A(n-1)。接下来执行带双步位移的QR分解(其中Mk的QR分解可以通过调用子程序实现),通过求解一元二次方程来获取二阶块矩阵的特征值,进而得到A(n-1)的所有特征值,这些就是原矩阵A的全部特征值。对于实数特征值,则采用列主元高斯消去法计算其对应的特征向量。