Advertisement

可逆直流调速系统中转速电流双闭环的仿真与设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究聚焦于可逆直流调速系统的优化,通过构建转速和电流双闭环控制策略,进行详尽的仿真分析,并提出一种高效的设计方案。 本段落介绍了一种转速电流双闭环可逆直流调速系统的仿真与设计方法。该系统基于交、直流调速系统的基本知识及工程设计方法,并结合生产实际需求确定性能指标与实现方案,进行初步的设计工作。同时运用计算机仿真技术,在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行仿真和优化设计。这种方法可为电气工程及其自动化领域的研究提供参考依据。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 仿
    优质
    本研究聚焦于可逆直流调速系统的优化,通过构建转速和电流双闭环控制策略,进行详尽的仿真分析,并提出一种高效的设计方案。 本段落介绍了一种转速电流双闭环可逆直流调速系统的仿真与设计方法。该系统基于交、直流调速系统的基本知识及工程设计方法,并结合生产实际需求确定性能指标与实现方案,进行初步的设计工作。同时运用计算机仿真技术,在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行仿真和优化设计。这种方法可为电气工程及其自动化领域的研究提供参考依据。
  • 仿
    优质
    本研究探讨了在可逆直流调速系统中的转速和电流双重闭环控制策略,并通过仿真验证其性能,为工业电机控制系统的设计提供了理论依据和技术支持。 本设计基于运动控制课程的要求,旨在对转速电流双闭环可逆直流调速系统进行仿真与设计。该系统的目的是实现转速电流的双重闭环控制,并且能够满足可逆运行、静态无静差以及动态过渡过程快速等性能指标。 具体的设计参数如下: - 直流电动机控制系统:输出功率为 5.5KW,电枢额定电压 220V,电枢额定电流 30A,电机机电时间常数为1S,额定转速970rpm。 - 环境条件:电网的额定电压是380/220V,并且可以承受10%的波动;环境温度范围从-40℃到+40℃;湿度在10%-90%之间变化。 - 控制系统性能指标:电流超调量应小于等于5%,空载起动至额定转速时,转速超调量应不超过30%,调节比为20,并且静差率应该控制在不大于0.03的范围内。 设计内容与数据资料包括: - 主电路方案采用了直流脉宽调制系统和控制系统中的双闭环(即速度环和电流环)控制。 - 在主电路中,使用了不可控整流器25JPF40电力二极管以及带有续流二极管的IGBT构成H型结构PWM逆变器进行电能转换。此设计还包含了电流检测环节、电流调节器以及转速检测环节和转速调节器。 - PWM变换器的选择:考虑到系统需要实现电动机可逆运行的功能,本设计选择了带续流功能的绝缘栅双极晶体管(IGBT)构成H型结构PWM变频器。电源电压Us通过不可控整流二极管25JPF40提供,并且使用大电容C进行滤波处理。 - 功率开关管应能承受两倍于电网额定电压的峰值,因此选用了FGA25N120AN型IGBT。另外,在IGBT关断时通过二级管为电机回路中的电感储能提供释放路径。 该设计的主要特点在于采用了转速电流双闭环控制方案和PWM变换器技术等手段来实现调节电流与转速的目标,从而满足上述性能指标的设定要求。
  • 基于仿
    优质
    本项目研究并实现了一种基于转速和电流双闭环控制策略的可逆直流电机调速系统。通过MATLAB/Simulink进行详细建模与仿真分析,验证了该系统的动态性能及稳定性,并探讨其在工业自动化中的应用潜力。 转速电流双闭环可逆直流调速系统的仿真与设计文档探讨了如何通过构建一个包含速度环和电流环的控制系统来实现对直流电机的有效控制。该系统能够在不同运行模式下保持稳定性能,同时提高响应速度及动态特性。本段落详细介绍了系统的设计原理、硬件选型以及软件开发过程,并通过计算机仿真验证了系统的可行性和优越性。
  • 基于Matlab仿
    优质
    本研究基于MATLAB/Simulink平台,构建了直流电机转速和电流双闭环控制系统模型,并进行了详尽的仿真分析。 本段落介绍了一个基于MATLAB的转速电流双闭环直流调速系统的仿真项目,包括一个用于设置参数的M文件和一个Simulink仿真模型。该项目适用于运动控制系统的课程设计。
  • 仿分析-仿.doc
    优质
    本文档探讨了双闭环直流调速系统的仿真实验与性能分析,通过MATLAB/Simulink等软件工具进行建模和仿真,详细研究了系统的动态响应特性及控制策略优化。 双闭环直流调速系统仿真 本段落详细介绍了双闭环直流调速系统的仿真过程,并提供了具体的参数设置方法。通过该文的指导,读者可以深入了解如何进行此类仿真的操作步骤以及相关技术细节。文档内容详尽且实用性强,适合需要学习或研究这一领域的人员参考使用。
  • 設計
    优质
    本项目聚焦于直流转速电机双闭环不可逆调速系统的设计与优化。通过构建精确的速度和电流控制回路,旨在提高电机驱动系统的响应速度、稳定性和效率。该设计对于自动化设备的性能提升具有重要意义。 ### 直流转速电机双闭环不可逆调速系统设计 #### 概述 直流转速电机双闭环不可逆调速系统是一种高效的电机控制系统,通过精确控制电机的速度和电流来实现高性能的驱动应用。该系统主要由转速环(ASR)和电流环(ACR)组成,并使用三相全控桥作为主电路及锯齿波触发器来控制晶闸管的导通角。设计目标是确保系统无静差运行,且在额定负载下启动到额定转速时的超调量小于10%,电流超调量小于5%。 #### 双闭环调速系统原理 ##### 1. 系统动态数学模型 假设电机工作于额定励磁状态,电枢反应去磁作用已补偿,电枢电感为常数且励磁电流与磁通均为额定值。由此可以构建直流电动机的等效电路模型: - **电枢回路电压平衡方程**:\[ U_a = R(I_a + I_d) + E \] - **电机传动系统运动方程**:\[ T_e - T_L = J\frac{d\omega}{dt} \] 其中,\(U_a\) 为电枢电压,\(R\) 为电枢电阻,\(I_a\) 和 \(I_d\) 分别是电枢和励磁电流,\(E\) 是反电动势,而 \(T_e, T_L, J,\) 和 \(\omega\) 则分别表示电磁转矩、负载转矩、转动惯量以及角速度。 ##### 2. 动态结构图变换与简化 基于上述数学模型,在零初始条件下通过拉普拉斯变换可以得到电压和电流之间的传递函数,以及电流与电动势之间的传递函数。利用这些传递函数绘制直流电机的动态结构图,并进行等效变换以更清晰地理解系统的动态特性。 ##### 3. 双闭环构想 为了实现最大电流启动,双闭环系统设计至关重要。通过负反馈控制保持电路恒定并确保转速无静差运行。具体来说,在该系统中设置了两个调节器:转速调节器(ASR)和电流调节器(ACR)。其中,转速调节器的输出作为电流调节器的输入;而电流调节器的输出用于触发晶闸管整流装置。这种结构使电流环成为内环,转速环为外环。为了获得良好的静态与动态性能,两个控制器均采用PI(比例积分)控制。 #### 电路实现 ##### 1. 三相全控桥 本系统使用了三相全控桥作为主电路,并采用了锯齿波触发器来驱动晶闸管。同步信号应滞后于晶闸管阳极电压的相应位置,以确保正确的相位关系。 ##### 2. 主电路整流变压器与同步变压器连接方式 主电路整流变压器采用DY-11接线法;而同步变压器则使用了DY-511接线模式。这保证了同步信号和晶闸管阳极电压之间的正确相位匹配。 #### 结论 通过上述设计,直流转速电机双闭环不可逆调速系统能够实现稳定高效的电机控制。该系统能快速达到所需转速,并确保电流与速度超调量在限定范围内。这对于需要高精度的应用场景非常有价值。未来的研究可以进一步探索如何提高系统的响应速度和稳定性及优化硬件以降低成本。
  • 优质
    本项目专注于设计一款基于双闭环控制策略的直流电机不可逆调速系统。通过精确调控电机的速度与电流,确保系统的高效稳定运行,适用于自动化设备等场景。 双闭环直流电机不可逆调速系统设计
  • 基于MATLAB仿
    优质
    本研究利用MATLAB软件构建了直流电机转速和电流的双闭环调速控制系统模型,并进行了详细仿真分析。 本段落介绍了一个基于MATLAB的转速电流双闭环直流调速系统的仿真项目,包括一个用于设置参数的M文件和一个Simulink仿真文件。该项目适用于运动控制系统课程设计使用。