
自动驾驶-II
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
《自动驾驶-II》深入探讨了高级驾驶辅助系统和全自动驾驶技术的发展现状与未来趋势,分析了关键技术挑战及解决方案,并讨论了相关法律法规和社会伦理问题。
自动驾驶技术是当前IT与汽车工业的前沿领域之一,它通过融合计算机视觉、传感器技术、人工智能及机器学习等多种控制系统来实现车辆自主导航和控制。本课件中MINIEYE的CEO刘国清分享了关于该领域的深入见解,并特别关注高级驾驶辅助系统(ADAS)的发展以及自动驾驶的关键组成部分。
ADAS是一种汽车技术,它包含了一系列旨在提高行车安全性的功能,如自动紧急制动、车道偏离警告及自适应巡航控制等。这些功能通过增强车辆的感知能力来降低交通事故风险并提升驾乘人员的安全性。随着技术进步,ADAS正不断进化以支持完全自动驾驶。
环境感知在自动驾驶中至关重要。它涉及使用雷达、摄像头、激光扫描仪(如LIDAR)和超声波传感器收集周围信息,并准确解析这些数据以便系统识别其他车辆、行人及其他障碍物等。
课件介绍了几种类型的ADAS系统,例如SensL和Renesas等,它们代表了业界不同的技术供应商。它们使用图像处理、深度学习及传感器融合来增强感知能力。
自动驾驶的核心功能之一是对象分类。通过这种功能,系统能够分辨出不同物体类型如轿车或摩托车,并识别其类别。之后还需定位这些物体的位置以确定在周围环境中的具体位置,这通常通过边界框实现。
检测到物体后,进行精确的像素级标注对于理解复杂环境至关重要。这意味着对每个像素标记所属对象部分的信息,有助于自动驾驶系统更好地解释周边状况。
执行上述任务时,需依靠一系列性能指标来评估效果和准确性,如检测率、误报率及漏检率等。这些帮助工程师优化系统表现。
此外课件还介绍了PRC曲线(精确度-召回率曲线)、IoU(交并比)以及AP与mAP等评估模型的指标,在物体检测任务中尤为重要:
1. PRC曲线展示了不同阈值下,模型准确性和召回的关系。
2. IoU衡量预测边界框和实际边界的重叠程度以评价准确性。
3. AP计算PRC曲线下面积作为综合性能度量。
4. mAP则是多类别平均的AP值。
本课件深入探讨了自动驾驶的核心技术和相关算法,为工程师与研究人员提供了宝贵资源。该技术有望显著减少交通事故、提高道路安全,并改变出行方式和物流系统。随着持续进步,我们期待未来享受更加便捷高效的自动驾驶汽车带来的便利性。
全部评论 (0)


