Advertisement

MLCC制造流程及生产工艺详解

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本资料深入解析多层陶瓷电容器(MLCC)的完整生产流程与关键技术,涵盖材料准备、成型烧结到终端测试等各环节工艺细节。 片式多层陶瓷电容器(MLCC)是电子整机中的主要被动贴片元件之一。它具备出色的性能、多种不同的品种、规格齐全、体积小且价格低廉等特点,有可能取代铝电解电容器及钽电解电容器,在广泛应用中表现出色。 以下是MLCC的制造流程: 1. 原材料——陶瓷粉配料是关键步骤(原材料决定了MLCC的性能); 2. 球磨——通过球磨机处理瓷粉原料约两到三天,使颗粒直径达到微米级; 3. 配料——根据特定比例混合各种原料; 4. 和浆——加入添加剂将混合材料制成糊状物; 5. 流延——将糊状物均匀涂在特种薄膜上(确保表面平整); 6. 印刷电极——按照规定模式在流延后的糊状物上印刷电极材料,保证不同MLCC尺寸的准确性及电极层错位; 7. 叠层——根据所需容值的不同将带有电极的浆体块叠加起来形成电容器坯件(具体尺寸由不同的层数确定); 8. 层压——使多层层状结构紧密连接在一起; 9. 切割——切割成单个独立的坯件; 10. 排胶——使用390摄氏度高温去除粘合剂。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MLCC
    优质
    本资料深入解析多层陶瓷电容器(MLCC)的完整生产流程与关键技术,涵盖材料准备、成型烧结到终端测试等各环节工艺细节。 片式多层陶瓷电容器(MLCC)是电子整机中的主要被动贴片元件之一。它具备出色的性能、多种不同的品种、规格齐全、体积小且价格低廉等特点,有可能取代铝电解电容器及钽电解电容器,在广泛应用中表现出色。 以下是MLCC的制造流程: 1. 原材料——陶瓷粉配料是关键步骤(原材料决定了MLCC的性能); 2. 球磨——通过球磨机处理瓷粉原料约两到三天,使颗粒直径达到微米级; 3. 配料——根据特定比例混合各种原料; 4. 和浆——加入添加剂将混合材料制成糊状物; 5. 流延——将糊状物均匀涂在特种薄膜上(确保表面平整); 6. 印刷电极——按照规定模式在流延后的糊状物上印刷电极材料,保证不同MLCC尺寸的准确性及电极层错位; 7. 叠层——根据所需容值的不同将带有电极的浆体块叠加起来形成电容器坯件(具体尺寸由不同的层数确定); 8. 层压——使多层层状结构紧密连接在一起; 9. 切割——切割成单个独立的坯件; 10. 排胶——使用390摄氏度高温去除粘合剂。
  • FPC
    优质
    本手册详尽解析柔性电路板(FPC)生产全流程,涵盖材料准备、图形转移、蚀刻及后续组装等关键步骤,旨在为制造工程师与技术爱好者提供专业指导。 本段落详细介绍柔性电路板(FPC)的生产流程,并对每个环节进行了详尽解释,确保读者能够轻松理解整个制造过程。
  • PCB
    优质
    本文章详细解析了PCB(印制电路板)生产的整个工艺流程,涵盖了从设计到成品的各项技术细节与步骤,适合电子制造行业从业者参考学习。 PCB详细生产工艺流程介绍,帮助初入该行业的人员了解并学习基础知识。
  • 芯片
    优质
    本文章详细解析了芯片制造的复杂工艺流程,通过直观的图表形式展示从设计到成品的各项关键步骤和技术细节。 自己从网上截图制成的PDF电子书,内容主要是Intel公司的工艺流程图示。这些图片简洁明了,易于理解,非常适合初学者入门学习。
  • 芯片
    优质
    本资料深入解析了芯片制造的关键步骤与技术细节,并通过详细的工艺流程图展示整个生产过程,帮助读者理解从设计到成品的每一环节。 PDF文档中的图解非常出色。从石英到芯片的整个过程都有详细介绍。
  • 锂离子电池.ppt
    优质
    本PPT详细解析了锂离子电池的生产过程,涵盖了从原材料准备到成品检测的各项工艺步骤和技术要点。适合电池行业从业人员学习参考。 锂离子电池的基本工艺流程主要包括以下几个步骤:首先是对原材料的准备与检验;然后是电极片制作,包括正负极材料涂布、烘干及分切;接下来是组装过程,涉及卷绕或叠层以及外壳封装等操作;随后进行化成和老化处理以确保电池性能稳定性和安全性;最后完成检测环节,对成品进行全面测试验证其各项指标是否达标。
  • CMOS芯片细图
    优质
    本资料详尽展示了CMOS芯片从设计到成品的全流程制造步骤,包括关键工艺如光刻、蚀刻和沉积等环节,为学习及研究半导体技术提供直观指导。 CMOS芯片制造过程是半导体行业中至关重要的一个环节,它包括一系列精细复杂的工艺步骤。这个过程始于1960年代的PMOS技术,随后在1970年代发展为NMOS技术,采用离子注入和多晶硅栅极。到了1980年代,CMOS集成电路开始取代NMOS集成电路,因为其具有更低的功耗。在这个时期,最小特征尺寸从3微米缩小到0.8微米,晶圆尺寸也从100毫米(4英寸)增加到150毫米(6英寸)。 在1980年代,CMOS工艺技术引入了许多创新,包括局部氧化硅(LOCOS)隔离技术,用于分隔电路元件。LOCOS工艺中首先在P型衬底上形成pad氧化层,然后通过低压化学气相沉积(LPCVD)生长氮化硅。接着涂覆光致抗蚀剂并进行掩模定义区域,随后刻蚀氮化硅以形成隔离沟槽,在刻蚀后去除光致抗蚀剂,并进行p+p+掺杂实现离子注入。氧化过程进一步扩大二氧化硅层,这就是LOCOS氧化硅隔离。 此外,1980年代的工艺还包括磷硅玻璃(PSG)的使用和再流来改善隔离效果;金属沉积采用蒸发器,而正性光致抗蚀剂配合投影打印机用于更精确的图案转移。等离子体蚀刻和湿法蚀刻技术则被用来在不同材料层间进行精细结构切割。 整个CMOS制造流程中每一步都至关重要,它们共同决定了芯片性能、集成度及可靠性。例如,氮化硅作为硬掩模材料对于保护下面的硅层以及提高离子注入精度具有重要作用;光刻和曝光过程准确性直接影响到电路尺寸与功能。 从1980年代至今,CMOS制造工艺持续演进,如采用铜互连技术替代传统铝互连以降低电阻及电感并提升信号传输速度。同时随着制程技术进步特征尺寸不断缩小已达到纳米级别;如今晶圆尺寸扩大到300毫米(12英寸)极大地提高了生产效率与芯片产量。 总结来说,CMOS芯片制造工艺是一个涉及多个步骤的精密过程包括衬底处理、氧化、氮化硅层形成、光刻、蚀刻和离子注入以及隔离技术等。这些技术的发展和完善推动了半导体行业的飞速进步使得现代电子设备性能及效率大幅提升。
  • 半导体
    优质
    《半导体制造工艺详解》一书深入浅出地介绍了从硅片准备到封装测试的整个半导体生产流程,适合电子工程学生及行业从业者阅读。 本段落将详细讲解半导体工艺流程,内容丰富且具体,非常适合初学者学习。
  • 汽车
    优质
    《汽车生产工艺流程》一书详细介绍了从原材料到成品车的各项制造工艺和生产管理过程,涵盖冲压、焊接、涂装、装配等核心环节。 汽车制造工艺流程概述可以初步了解汽车的生产制造过程。
  • FPC
    优质
    FPC生产工艺全流程简介涵盖了柔性电路板从原材料准备到成品产出的所有关键步骤,包括裁剪、钻孔、图形转移及电镀等工序。 FPC生产流程(全流程) FPC的生产过程从原材料到成品包括多个步骤:开料、钻孔、PTH处理、电镀、贴干膜、曝光、显影、蚀刻,表面处理,贴覆盖膜,压制与固化,沉镍金等工艺环节以及后续的印字符号、剪切和检测包装等一系列操作。 1. FPC生产流程: 1.1 双面板制程: 开料 → 钻孔 → PTH → 电镀 → 贴干膜(前处理)→ 对位曝光显影 → 图形电镀脱膜再贴干膜对位曝光显影蚀刻脱膜表面处理后,覆盖上保护层进行压制固化,沉镍金并印字符剪切检测包装出货。 1.2 单面板制程: 开料 → 钻孔 → 贴干膜(前处理)→ 对位曝光显影蚀刻脱膜表面处理贴覆保护层后压制固化再进行表面处理沉镍金,印字符剪切检测包装出货。 2. 开料步骤: 原材料编码解析:例如NDIR050513HJY表示双面板压延铜材质,PI厚度为0.5mil(即12.5um),铜厚为18um胶层厚13um;XSIE101020TLC代表单面电解铜板,PI和铜的总厚度分别为25um及35um胶层为20um。覆盖膜CI0512NL则表示其PI厚度与粘合剂均为12.5um。 制程品质控制:操作人员应佩戴手套指套避免汗液导致铜箔氧化,正确架料防止皱折发生;裁切时不可破坏定位孔和测试孔。材料表面不能有褶皱、污点或重氧化现象,并且不得出现毛边溢胶等不良情况。 3. 钻孔步骤: 打包过程包括选择盖板组板粘合贴箭头标记,单面板每批30张双面板6张,包装数量上限为15张。盖板的作用是防止钻机和压力脚造成的压伤,并且帮助定位避免偏斜以及带走热量减少断针几率。 钻孔流程包括开机上板调入程序设置参数进行实际钻孔自检IPQA检验量产转移至下一工序,同时注意使用次数管理新钻头识别等事项。品质管控点在于确认红胶片信息是否正确、检查孔的导通性以及外观无不良现象。 4. 电镀步骤: PTH(化学镀铜)流程包括碱除油水洗微蚀再两次水洗预浸活化速化后进行化学铜处理,最后经过三次清洗。常见问题如孔内无铜、壁面颗粒粗糙及板面色泽发黑等需及时解决。 5. 线路步骤: 干膜在板材上完成曝光显影后形成线路基础形态,在此过程中干膜主要起到影像转移和保护作用,其构成包括PE感光阻剂PET。作业时保持清洁平整无气泡皱折现象,并确保良好的附着力。 5.4 贴干膜质量确认: 通过贴膜后的曝光过程来检验干膜与板面之间的粘合强度。