Advertisement

PGA相位梯度法代码包.zip_PGA_matlab_多普勒中心_相位估算_相位梯度

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源包含PGA(Phase Gradient Algorithm)相位梯度法的MATLAB实现代码,适用于估计信号的多普勒中心和进行精确的相位估算。 基于相位梯度法(PGA)的Matlab估计相位误差及多普勒中心的方法。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PGA.zip_PGA_matlab___
    优质
    本资源包含PGA(Phase Gradient Algorithm)相位梯度法的MATLAB实现代码,适用于估计信号的多普勒中心和进行精确的相位估算。 基于相位梯度法(PGA)的Matlab估计相位误差及多普勒中心的方法。
  • 自动聚焦
    优质
    相位梯度自动聚焦(Phase Gradient Autofocus, PGA)算法是一种用于雷达信号处理中校正模糊误差的有效方法。它通过检测并修正像差,提高图像清晰度与分辨率,在军事及民用领域有广泛应用价值。 相位梯度自聚焦算法论文是原作者在其毕业论文的引文中引用的一篇重要文献。
  • 自聚焦的性能评与优化(2004年)
    优质
    本文于2004年发表,专注于分析和改进相位梯度自聚焦算法的性能,通过理论研究和实验测试提出多项优化策略。 本段落描述了相位梯度自聚焦(PGA)算法的实现步骤,并在此基础上提出了两种改进方法以提升其性能。首先通过优化加窗技术来加快PGA算法的执行速度;其次,选择合适的距离行进行处理,使该算法在低信噪比环境下仍能获得良好的聚焦效果。
  • PhaseEstimation_载波计_载波_VV_计.zip
    优质
    本资源提供了一种名为VV算法的载波相位估计方法,旨在解决信号处理中精确测量载波相位的问题。适合科研与工程应用。 PhaseEstimation_载波估计_载波相位_载波相位估计_vv算法_相位估计.zip
  • APFFT实验.zip_APFFT频率分析_全计_
    优质
    本资源包含全相位APFFT实验代码,用于进行高效的频域分析与精确的全相位估计。适用于信号处理和通信领域中相位算法的研究与应用开发。 全相位APFFT与传统的FFT算法在频率和相位估计方面有所不同。
  • PhaseEstimation_载波计_计_VV_源.zip
    优质
    本资源提供了一种名为VV算法的载波相位估计方法的源代码实现。适用于研究与开发需要进行精确相位估计的应用场景,有助于提高通信系统的性能和可靠性。 PhaseEstimation_载波估计_载波相位_载波相位估计_vv算法_相位估计_源码.zip
  • 改良型机载SAR自聚焦(2012年)
    优质
    本文提出了一种针对机载合成孔径雷达(SAR)系统的改进型相位梯度自聚焦(Phase Gradient Autofocus, PGA)算法,有效提高了图像质量和抗干扰能力。 相位梯度自聚焦算法的关键步骤是加窗处理,其中窗宽度的确定直接影响成像效果:如果窗宽度过大,则会引入大量噪声;反之则可能无法包含足够的散焦信息用于成像。为此,在复杂场景中针对强散射点的不同划分情况,本段落提出了一种改进的相位梯度自聚焦方法。该方法通过设定阈值来对强散射点进行分类,并采用门限式加窗技术。 与传统相位梯度自聚焦算法相比,新方法在分辨率和清晰度上表现出更佳性能。最后,文章使用机载雷达的真实数据验证了改进方法的有效性。
  • 脉冲压缩雷达补偿
    优质
    本文提出了一种应用于相位编码脉冲压缩雷达系统的多普勒补偿算法,有效提升了目标检测精度和距离分辨率。 相位编码脉冲压缩雷达(Phase-Coded Pulse Compression Radar, PCPR)是一种结合了相位编码技术和脉冲压缩技术的现代雷达系统,能够实现高分辨率、远探测距离以及良好的抗干扰性能。 多普勒补偿算法是PCPR中的重要组成部分,旨在解决由于目标相对雷达运动引起的多普勒频移问题。它确保回波信号能被精确解码和定位。 相位编码通过在发射脉冲序列中引入预定的相位变化模式来实现。这种模式可以线性或非线性的形式存在(如M序列、Gold码等)。每个脉冲具有不同的相位,提高了信息密度,在不增加功率与带宽的情况下提升了探测距离和分辨力。 PCPR的核心在于脉冲压缩技术。通过发射宽带短脉冲并在接收端使用长编码匹配滤波器将信号转换为窄带形式,实现时间-频率的高效压缩,从而获得高时间和频谱分辨率(对应于目标的距离和速度)。 然而,在雷达探测运动目标时,多普勒效应会导致回波信号频率偏移。如果不进行补偿,则可能导致解码错误及距离估计精度下降。因此,设计了多普勒补偿算法来解决此问题,并确保脉冲压缩的准确性。 该算法通常包括以下步骤: 1. 多普勒频移估计:通过分析自相关函数或快速傅里叶变换(FFT)来确定目标的多普勒偏移。 2. 频率校正:根据估算值调整匹配滤波器中心频率,以抵消频移影响。 3. 信号重采样:在完成频率修正后可能需要对压缩后的信号重新进行采样,确保正确的距离间隔。 4. 解码更新:应用新的相位编码解码规则处理重采样的数据,从而得到准确的目标信息。 实际工程中实施多普勒补偿算法时需考虑雷达系统参数、目标运动特性以及环境噪声等因素,并对其进行优化设计以提高整体性能。对于高速或复杂场景中的移动目标可能需要更复杂的补偿策略如递归或多阶段的补偿方案等。 综上所述,相位编码脉冲压缩雷达的多普勒补偿技术是保证有效探测和跟踪运动目标的关键手段,在军事及民用领域具有重要的理论与实践价值。
  • 载波计_PhaseEstimation_VV_计_载波
    优质
    本项目聚焦于通信系统中的关键问题——载波相位估计,提出了一种创新性的VV算法,专门用于提升信号接收质量与稳定性。该算法在复杂的无线环境中展现出卓越的性能和精度,在减少相位误差方面具有显著优势。通过精确的数学建模和高效的计算方法,PhaseEstimation_VV算法能够有效解决传统载波同步技术中的难点,为现代通信系统提供可靠且先进的解决方案。 此程序采用VV算法进行载波相位估计,能够准确地估算出初始的载波相位差,并且该算法具有较高的估计精度。
  • FDDCT.rar_裹_展开_解_解_
    优质
    FDDCT.rar提供了一种基于离散余弦变换(DCT)的高效相位解包裹方法,适用于解决光学干涉测量中遇到的相位不连续问题。该资源包含多种解包裹算法,旨在准确恢复连续的相位信息,便于进一步的数据分析和处理。 基于四向最小二乘解包裹算法可以实现对包裹相位的相位展开。