本文深入探讨了在Simulink环境下,风力发电并网对电力系统二次调频的影响,并创新性地构建了一个包含两个传统电网区域互联的仿真模型。通过模拟不同风电接入比例和负荷变动情况下的频率响应特性,研究提出了一种优化自动发电控制(AGC)系统的策略,以增强系统的频率稳定性和调节性能。该研究为提高含高渗透率可再生能源电力系统运行可靠性提供了理论依据和技术支持。
Simulink二次调频中的风电机组接入与传统两区域互联模型的新探索:AGC调频技术研究
在现代电力系统中,Simulink作为一种强大的软件工具被广泛应用于自动发电控制(AGC)领域。AGC是维持电网频率和电压稳定性的关键过程,而Simulink的二次调频技术在此过程中发挥了重要作用。二次调频是在电力系统运行时基于系统的频率偏差以及联络线功率交换信号来调整发电机输出功率的一种策略,从而实现新的平衡状态。这项技术的发展和完善对于确保电力系统的稳定性至关重要。
随着可再生能源在电网中的比例不断增加,风电机组作为重要的组成部分,在电力系统中扮演着越来越关键的角色。然而,由于其产生的电能具有间歇性和不确定性特点,接入传统两区域互联模型的风电机组对维持电力系统的稳定运行提出了新的挑战。因此,通过AGC调频技术优化风电机组功率输出成为必要。
本段落研究了在传统的两区域互联模型基础上加入风电机组进行AGC调频的新方法,并利用Simulink仿真平台模拟电网的实际运行情况,探讨如何使风电机组与传统电力系统元件协同工作。该研究不仅涵盖了模型的建立和参数设置,还涉及不同控制策略的设计及效果评估。
传统的两区域互联模型将整个系统划分为两个区域并通过联络线连接起来。每个区域内包含各种类型的发电机组(如火电、水电和风电等),以确保频率稳定性和功率平衡。为了实现这一目标,各区域需要通过AGC进行快速的功率调节。在引入风电机组后,研究提出的策略不仅旨在使这些设备适应于AGC控制框架内,还需保证两区域间的整体稳定性。
此外,在Simulink环境下构建和仿真模型是本段落的重要组成部分之一。通过建立详细的动力学模型和控制系统,可以模拟电网运行中的各种动态因素(如风电输出波动、负荷变化等)。基于仿真实验的结果分析了不同控制策略对系统稳定性的潜在影响,并提出了相应的改进措施。
综上所述,本研究深入探讨了Simulink二次调频中风电机组接入与传统两区域互联模型的新方法和AGC调频技术的应用。通过理论研究及仿真试验,为电力系统的优化设计提供了有效的指导和支持,有助于提高整个电网运行的效率和可靠性。