Advertisement

使用Fortran语言,通过牛顿迭代法求解方程的零点。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
利用Fortran编程语言,采用牛顿迭代法来求解方程的根。该代码中包含了详细的注释,以便于理解和使用。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Fortran实现
    优质
    本项目利用Fortran编程语言编写程序,采用数值分析中的经典算法——牛顿迭代法来高效地寻找非线性方程的近似根。通过精确控制迭代次数与误差范围,该方法适用于多种数学问题的求解需求。 使用Fortran语言编写牛顿迭代法求解方程的零点,并在代码中加入了详细的注释。
  • Burgers_.zip_Burgers__
    优质
    本资源包含针对Burgers方程求解的代码和文档,采用高效的数值分析方法——牛顿迭代法。通过细致的算法设计与实现,为研究非线性偏微分方程提供了一个实用工具,适用于学术研究及工程应用。 用牛顿迭代法求解Buegers方程的精确解。
  • 优质
    本简介介绍如何使用牛顿迭代法求解各种类型的方程。通过逐步逼近的方法,该算法可以高效地找到函数零点,并适用于非线性方程的快速求解问题。 在MATLAB平台上使用牛顿法求解方程的根时,由于该方法具有二次收敛性,因此求解速度快。
  • Fortran实现Newton非线性组.rar_fortran_非线性组_Newton__
    优质
    该资源为Fortran语言编写的新时代经典数值方法——利用Newton法求解非线性方程组的程序代码,适用于科学研究与工程计算。包含源码及详细文档说明。 使用Fortran语言可以通过牛顿迭代法求解非线性方程组,可以处理二元或多元的情况。
  • 高次
    优质
    本简介介绍如何使用经典的牛顿迭代算法来高效地寻找高次多项式方程的近似根,适用于初学者与进阶学习者。 根据计算方法编写的应用,在需要对其中的数据进行修改时,请按照以下步骤操作:首先确认需要更改的具体数据项;然后定位到相关代码段落或数据库表;接着执行相应的更新操作并保存改动;最后测试以确保变更正确无误且不影响其他功能。
  • 非线性
    优质
    本项目采用牛顿迭代算法解决复杂的非线性方程组问题,通过不断逼近根值来优化计算效率和精度。 牛顿迭代法可以用于解非线性方程组。在应用此方法时,需要输入方程及其雅克比矩阵。
  • C详细
    优质
    本篇文章深入浅出地讲解了如何使用C语言实现牛顿迭代算法来求解非线性方程,并提供了详细的代码示例和解释。 利用迭代算法解决问题需要做好以下三个方面的工作: 一、确定迭代变量 在可以用迭代算法解决的问题中,至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 二、建立迭代关系式 所谓迭代关系式是指如何从变量的前一个值推导出其下一个值的公式。这是解决问题的关键步骤,通常可以通过递归或者反向推理的方法来完成。 三、对迭代过程进行控制 在何时结束迭代过程是编写迭代程序时必须考虑的问题。不能让算法无休止地执行下去。对于迭代过程的控制一般有两种方式:一种情况是所需的迭代次数是可以计算出来的;另一种则是根据特定条件判断是否继续进行循环。
  • 使、弦截及二分
    优质
    本项目探讨了三种经典的数值分析方法——牛顿迭代法、弦截法和二分法,以高效准确地求解非线性方程的根。通过比较这三种算法在不同情况下的表现,旨在为实际问题提供优化选择。 ### 目的 1. 通过使用牛顿迭代法、弦截法和二分法求解方程根的方法进行程序设计,使学生能够更加系统地理解和掌握C语言中的函数间参数传递方法以及数组与指针的应用技巧。同时培养学生利用所学知识解决实际数学问题的能力,并学会查阅资料及工具书。 2. 提高建立程序文档、归纳总结等能力的培养; 3. 进一步巩固和灵活运用《计算机文化基础》课程中关于文字处理、图表分析、数据整理以及应用软件之间图表与数据共享等方面的信息技术综合处理技能。 ### 基本要求 1. 使用模块化设计的思想,用C语言完成程序的设计。 2. 分别编写牛顿迭代法、弦截法和二分法求根的函数,并将它们分别保存在不同的.CPP文件中; 3. 在VC++6.0环境下进行调试,掌握并能够独立解决问题的方法; 4. 程序调试完成后整理文档,并添加必要的注释。 ### 方法介绍 #### 牛顿迭代法 适用于解方程\[f(x) = a_0x^n + a_1x^{n-1}+\cdots+a_{n-2}x^2 +a_{n-1}x + a_n=0\],在点$x=x_0$附近的根。迭代公式为:\[ x_{n+1}= x_n - \frac{f(x_n)}{f(x_n)}\] 精度要求:$\epsilon = |x_{n+1}-x_n|< 1.0e^{-m}$,其中$m=6$。 #### 二分法 选取两点$x_1$和$x_2$来判断区间$(x_1, x_2)$内是否存在实根。如果$f(x_1) \cdot f(x_2)<0$,则该区间存在一个实根。 取中点$x = (x_1 + x_2)/2$,根据新的条件继续重复上述步骤直到满足精度要求:$\left|x_{1}-x_{2}\right|< 10^{-6}$。 #### 弦截法 选取两点$x_1$和$x_2$并计算$f(x_1)$与$f(x_2)$连线与x轴的交点作为新的迭代值。之后根据判断条件舍弃部分区间,直到两次连续求出的根之间的差值小于$10^{-6}$为止。 ### 实验内容 使用上述三种方法分别解方程\[f(x) = x^3 - 2x^2 +7x+4=0\]。初始条件如下: - 牛顿迭代法:初值$x_0=0.5$; - 弦截法:两点的初始位置分别为$x_1=-1, x_2=1$; - 二分法:两点的初始位置为$x_1=-1, x_2=0$。 精度要求同上。
  • 非线性
    优质
    本研究探讨了应用牛顿迭代算法解决复杂的非线性方程组问题,通过优化迭代过程提高了计算效率和精度。 牛顿迭代法求非线性方程组的C++源代码可供大家参考。
  • 2.rar_非线性组_matlab_
    优质
    本资源包含利用牛顿迭代法求解非线性方程组的MATLAB实现代码。文件详细展示了如何设置初始条件、构建函数及其雅可比矩阵,并进行迭代计算以逼近解的过程,适用于数值分析与工程应用学习。 在MATLAB开发环境下使用牛顿迭代法求解非线性方程组时,用户只需将描述非线性方程组的M文件fx1(x)以及其导数的M文件dfx1(x)相应地代入即可。