Advertisement

C语言实现的链表排序代码.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本资源提供了一个使用C语言编写的链表排序算法的完整代码示例。其中包括多种常见的链表操作及排序方法,如插入、删除和冒泡排序等,适合初学者学习与参考。 在编程领域,链表是一种非常基础且重要的数据结构。它与数组不同,并不依赖于连续的内存空间,而是通过节点间的指针链接来存储数据。 本项目讨论的是如何使用C语言实现链表排序,特别是采用选择排序算法进行排序。选择排序是一种简单直观的方法:对未排序序列进行多轮选择,在每一轮中找到当前未排序部分中的最小(或最大)元素,并将其放置在已排序部分的末尾。 首先需要定义一个结构体类型来创建链表节点: ```c typedef struct ListNode { int val; // 节点值 struct ListNode *next; // 指向下一个节点的指针 } ListNode; ``` 接下来实现一些基本操作,如添加新元素、插入到链尾等。这些函数是进行排序的基础: ```c // 创建一个新节点 ListNode* createNode(int val) { ListNode* newNode = (ListNode*)malloc(sizeof(ListNode)); newNode->val = val; newNode->next = NULL; return newNode; } // 在链表末尾插入一个新的元素 void appendToList(ListNode** head, int val) { ListNode* newNode = createNode(val); if (*head == NULL) { *head = newNode; } else { ListNode* temp = *head; while (temp->next != NULL) { temp = temp->next; } temp->next = newNode; } } ``` 然后实现选择排序算法。每一轮中,该算法会找到未排序部分的最小元素,并将其放在已排序部分的末尾: ```c // 对链表使用选择排序 void selectionSortList(ListNode** head) { if (*head == NULL || (*head)->next == NULL) { return; } ListNode* minPtr = *head; // 记录最小元素的位置 ListNode* currentPtr = *head; while (currentPtr != NULL) { if (currentPtr->val < minPtr->val) { minPtr = currentPtr; } currentPtr = currentPtr->next; } if (minPtr != *head) { swapNodes(*head, minPtr); } selectionSortList(&minPtr->next); // 对剩余未排序部分递归调用 } // 交换两个节点的值 void swapNodes(ListNode* node1, ListNode* node2) { int temp = node1->val; node1->val = node2->val; node2->val = temp; } ``` 为了验证排序是否正确,还需要实现一个打印链表内容的功能: ```c // 打印整个链表的内容 void printList(ListNode* head) { ListNode* temp = head; while (temp != NULL) { printf(%d -> , temp->val); temp = temp->next; } printf(NULL\n); } ``` 现在,你已经拥有了一个完整的C语言实现链表选择排序的程序。你可以创建并填充一些随机或特定数值到链表中,然后调用`selectionSortList`函数进行排序,并通过`printList`验证结果是否正确。这种实践有助于理解链表和选择排序算法的工作原理及其实现方法。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • C.zip
    优质
    本资源提供了一个使用C语言编写的链表排序算法的完整代码示例。其中包括多种常见的链表操作及排序方法,如插入、删除和冒泡排序等,适合初学者学习与参考。 在编程领域,链表是一种非常基础且重要的数据结构。它与数组不同,并不依赖于连续的内存空间,而是通过节点间的指针链接来存储数据。 本项目讨论的是如何使用C语言实现链表排序,特别是采用选择排序算法进行排序。选择排序是一种简单直观的方法:对未排序序列进行多轮选择,在每一轮中找到当前未排序部分中的最小(或最大)元素,并将其放置在已排序部分的末尾。 首先需要定义一个结构体类型来创建链表节点: ```c typedef struct ListNode { int val; // 节点值 struct ListNode *next; // 指向下一个节点的指针 } ListNode; ``` 接下来实现一些基本操作,如添加新元素、插入到链尾等。这些函数是进行排序的基础: ```c // 创建一个新节点 ListNode* createNode(int val) { ListNode* newNode = (ListNode*)malloc(sizeof(ListNode)); newNode->val = val; newNode->next = NULL; return newNode; } // 在链表末尾插入一个新的元素 void appendToList(ListNode** head, int val) { ListNode* newNode = createNode(val); if (*head == NULL) { *head = newNode; } else { ListNode* temp = *head; while (temp->next != NULL) { temp = temp->next; } temp->next = newNode; } } ``` 然后实现选择排序算法。每一轮中,该算法会找到未排序部分的最小元素,并将其放在已排序部分的末尾: ```c // 对链表使用选择排序 void selectionSortList(ListNode** head) { if (*head == NULL || (*head)->next == NULL) { return; } ListNode* minPtr = *head; // 记录最小元素的位置 ListNode* currentPtr = *head; while (currentPtr != NULL) { if (currentPtr->val < minPtr->val) { minPtr = currentPtr; } currentPtr = currentPtr->next; } if (minPtr != *head) { swapNodes(*head, minPtr); } selectionSortList(&minPtr->next); // 对剩余未排序部分递归调用 } // 交换两个节点的值 void swapNodes(ListNode* node1, ListNode* node2) { int temp = node1->val; node1->val = node2->val; node2->val = temp; } ``` 为了验证排序是否正确,还需要实现一个打印链表内容的功能: ```c // 打印整个链表的内容 void printList(ListNode* head) { ListNode* temp = head; while (temp != NULL) { printf(%d -> , temp->val); temp = temp->next; } printf(NULL\n); } ``` 现在,你已经拥有了一个完整的C语言实现链表选择排序的程序。你可以创建并填充一些随机或特定数值到链表中,然后调用`selectionSortList`函数进行排序,并通过`printList`验证结果是否正确。这种实践有助于理解链表和选择排序算法的工作原理及其实现方法。
  • C中多种快速
    优质
    本文探讨了在C语言环境下,针对不同类型的链表(如单向链表、双向链表等)进行高效快速排序算法的具体实现方法和优化策略。 C语言可以用来实现多种链表的快速排序算法。这种方法能够有效地对不同类型的链表数据进行高效的排序处理。
  • C操作
    优质
    本文将介绍在C语言中如何实现对链表数据结构进行排序的操作方法,包括常见的排序算法及其优化技巧。 链表的创建与排序操作涉及一系列步骤和技术细节。在进行链表操作时,首先要理解其基本结构,并掌握如何插入、删除节点以及遍历整个列表。对于排序而言,则需要选择合适的算法(如冒泡排序或快速排序)来确保数据有序排列,同时注意保持链表原有的指针关系不变。
  • C通过双向快速
    优质
    本项目采用C语言编写,利用双向链表的数据结构特性,高效地实现了快速排序算法。代码简洁清晰,适合学习和研究快速排序及链表操作。 使用双向链表实现快速排序的C语言代码示例及详细注释如下:该方法通过利用双向链表的数据结构特性来优化传统数组上的快速排序算法,可以有效处理某些特定场景下的数据集。在重写过程中保留了原始意图和内容的核心信息,并添加必要的解释帮助理解每一步操作的目的与作用。
  • C中单完整
    优质
    本资源提供了一个全面而详尽的C语言单链表实现教程及源码。包括创建、插入、删除和遍历等操作,适合初学者学习数据结构基础。 单链表的C语言实现是根据严蔚敏《数据结构(C语言版)》中的ADT编写的,可能不够完整。
  • C中插入
    优质
    本文章详细介绍了C语言中如何实现插入排序算法,并提供了相应的代码示例,帮助读者理解其工作原理及应用。 C语言插入排序的代码实现涉及将一个数组中的元素逐一按照从小到大或从大到小的顺序排列。在执行过程中,算法会遍历整个列表,并对每个元素进行比较与交换操作,确保它位于已排序部分的正确位置上。 以下是使用C语言编写的一个简单示例来展示如何实现插入排序: ```c #include void insertionSort(int arr[], int n) { int i, key, j; for (i = 1; i < n; i++) { key = arr[i]; j = i - 1; // 将arr[0..i-1]中大于key的元素移动到一个位置后 while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = key; } } void printArray(int arr[], int n) { for (int i = 0; i < n; i++) printf(%d , arr[i]); printf(\n); } int main() { int arr[] = {5, 2, 4, 6, 1, 3}; int n = sizeof(arr)/sizeof(arr[0]); insertionSort(arr, n); printArray(arr, n); return 0; } ``` 上述代码演示了如何通过函数`insertionSort()`对整数数组进行排序,并使用另一个辅助函数`printArray()`来输出排列后的结果。
  • -C含头结点.zip
    优质
    本资源提供了C语言中使用单链表数据结构的实例代码,特别强调了包含头节点的设计方法。适合于学习和理解链表操作的基础知识。 链表是一种基础且重要的数据结构,在计算机科学领域扮演着关键角色,尤其是在处理动态数据集合方面。在C语言环境中,链表不像数组那样以连续的内存块形式存储元素;相反地,它通过节点之间的指针来链接各个部分。 本资料包涵盖了如何使用C语言构建一个带有头结点的单向链表的相关内容和实现细节。 首先我们来看一下关于链表的基本概念。每个链表由一系列节点构成,而每一个这样的节点又包含两部分内容:一个是用于存储数据的数据域(这里假设为整型),另一个是指针域用来指向下一个相邻的节点。在单向链表中,每个节点仅通过一个指针与后续元素相连接;而在带有头结点的链表结构里,则会在整个列表开始的位置添加这样一个特殊的、不包含实际数据内容但用于方便操作(比如初始化和遍历)的额外节点。 接下来我们将讨论如何定义C语言中的链表节点。这可以通过创建一个名为`Node`的结构体类型来完成: ```c typedef struct Node { int data; // 数据域,这里假设存储整型数据 struct Node* next; // 指针域,指向下一个结点 } Node; ``` 为实现链表功能,我们需要定义一系列基本操作如创建节点、插入新元素到列表中、从列表里移除特定项以及遍历整个结构等。例如,我们可以使用动态内存分配技术来构建新的节点: ```c Node* createNode(int data) { Node* newNode = (Node*)malloc(sizeof(Node)); if (newNode == NULL) { printf(Memory allocation failed.\n); return NULL; } newNode->data = data; newNode->next = NULL; return newNode; } ``` 在C语言中,带头结点的链表初始化可以这样执行: ```c Node* head = NULL; // 初始化为空列表 ``` 插入节点的操作可以在链表头部或尾部进行。例如,在链表头部添加新元素可以通过如下代码实现: ```c void insertAtHead(Node** head, int data) { Node* newNode = createNode(data); newNode->next = *head; *head = newNode; } ``` 而向列表末端插入节点则可以采用以下方式: ```c void insertAtTail(Node** head, int data) { Node* newNode = createNode(data); if (*head == NULL) { *head = newNode; } else { Node* temp = *head; while (temp->next != NULL) { temp = temp->next; } temp->next = newNode; } } ``` 删除节点通常需要找到目标元素的前一个位置,然后更新其`next`指针。例如,从链表中移除指定值的节点可以通过以下代码实现: ```c void deleteNode(Node** head, int key) { Node* temp = *head; Node* prev; if (temp != NULL && temp->data == key) { *head = temp->next; // 头结点就是待删除项 free(temp); return; } while (temp != NULL && temp->data != key) { prev = temp; temp = temp->next; } if (temp == NULL) return; // 节点不存在 prev->next = temp->next; free(temp); } ``` 遍历链表可以简单地从头节点开始,依次通过`next`指针访问每个元素: ```c void traverseList(Node* head) { Node* temp = head; while (temp != NULL) { printf(%d -> , temp->data); temp = temp->next; } printf(NULL\n); } ``` 这些基础操作构成了链表管理的核心功能。通过掌握创建、修改及查看带有头结点的单向链表的方法,你将能够为深入学习更复杂的数据结构和算法打下坚实的基础;因为许多高级数据类型都是基于这种简单的列表模型构建起来的。
  • C算法.zip
    优质
    本资源包含多种经典的C语言实现的排序算法源代码,如冒泡排序、快速排序等,适用于学习和实践参考。 本段落介绍了七种排序算法的C语言实现方法:直接插入排序、希尔排序、快速排序、简单选择排序、堆排序、归并排序以及基数排序。
  • C归并数据结构示例
    优质
    本篇文章提供了一个使用C语言实现链表归并排序的数据结构和示例代码,帮助读者理解和掌握链表归并排序的具体操作方法。 在C语言的数据结构学习中,链表归并排序是一个常见的练习题目。本例涉及两个无头节点的单链表(分别由指针ha和hb表示),这两个链表中的数据已经按照递增顺序排列。 任务是将第二个链表hb合并到第一个链表ha中,并且保持整个合并后的列表依然有序,同时如果在ha中有重复的数据,则不从hb中添加这些相同值的节点。在这个过程中不允许破坏原链表Lb的结构。 以下是实现上述功能的一个C语言示例代码: ```c #include #include #define N1 6 // 链表La(由ha指针指向)的长度定义为6个元素。 #define N2 6 // 链表Lb(由hb指针指向)的长度定义为6个元素。 struct listnode { int data; struct listnode *next; }; void mergeLists(struct listnode **heada, struct listnode *headb) { struct listnode *currentA = (*heada); struct listnode *previousA = NULL; while (currentA != NULL && headb != NULL) { // 遍历两个链表直到其中一个为空。 if (currentA->data < headb->data){ previousA = currentA; currentA = currentA->next; } else { struct listnode *tempB = headb; headb = headb->next; // 将headb的节点插入到ha链表中 if (previousA != NULL) { previousA->next = tempB; tempB->next = currentA; } else { tempB->next = (*heada); *heada = tempB; } } } // 如果ha链表遍历结束而hb还有剩余节点,直接将剩下的部分接在后面 if (currentA == NULL) previousA->next = headb; } void printList(struct listnode* node) { while(node != NULL){ printf(%d , node->data); node = node->next; } } int main() { // 初始化链表ha和hb struct listnode *heada, *currentA; heada = (struct listnode*)malloc(sizeof(struct listnode)); currentA = heada; for(int i=0; idata=i*2+3; if(i==N1-1) { // 最后一个节点 currentA->next=NULL; } else { struct listnode *temp=(struct listnode*)malloc(sizeof(struct listnode)); temp->next = NULL; currentA->next=temp; currentA=currentA->next; } } struct listnode *headb, *currentB; headb = (struct listnode*)malloc(sizeof(struct listnode)); currentB=headb; for(int i=0; idata=i*3+1; if(i==N2-1) { // 最后一个节点 currentB->next=NULL; } else { struct listnode *temp=(struct listnode*)malloc(sizeof(struct listnode)); temp->next = NULL; currentB->next=temp; currentB=currentB->next; } } mergeLists(&heada, headb); printf(合并后的链表:); printList(heada); return 0; } ```
  • 用邻接C
    优质
    本段代码采用C语言编写,实现了使用邻接链表表示和操作图的数据结构及算法,适用于图论相关问题求解。 邻接链表实现图的操作包括以下步骤:1. 创建图;2. 销毁图;3. 清空图;4. 加入边;5. 删除边;6. 获取权值;7. 获取节点的度数;8. 获取图中的节点数量;9. 获取图中边的数量。