Advertisement

反激式设计的DCM模式

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:XLS


简介:
简介:反激式设计在断续导通模式(DCM)下运行,是一种高效的电源变换技术,适用于低压差输入到高压输出的应用场景。 通过傻瓜式反激拓扑计算工具,只需填入相应的输入参数即可获得所有设计值。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DCM
    优质
    简介:反激式设计在断续导通模式(DCM)下运行,是一种高效的电源变换技术,适用于低压差输入到高压输出的应用场景。 通过傻瓜式反激拓扑计算工具,只需填入相应的输入参数即可获得所有设计值。
  • DCM下RCD参数
    优质
    本文探讨了在反激变换器断续导电模式(DCM)下的钳位二极管(RCD)电路参数优化与设计方法,提供精确的计算步骤和理论分析。 如果电路在DCM模式下不添加RCD钳位,则可能发生两次振荡现象。第一次振荡主要由初级漏感Lkp与Coss电容的相互作用引起;第二次则是在电路能量耗尽后,由于励磁电感和Coss电容之间的交互导致的。这一现象已经在仿真中得到验证,并且观察到了明显的迹象。
  • DCM变压器软件
    优质
    DCM反激式变压器设计软件是一款专业的电子工程辅助工具,专为工程师设计,能够高效准确地完成断续导电模式(DCM)下反激式变压器的设计与优化工作。 反激式变压器设计在电力电子领域特别是开关电源设计中占据重要地位,在低功率应用如适配器、充电器等领域被广泛采用。本段落将深入探讨其设计原理、关键参数计算及软件的应用。 理解基本工作原理至关重要:反激式变压器通过开关管实现能量从输入侧到输出侧的传输,导通阶段储存能量,断开阶段释放给负载,从而保证隔离并提高无负载或轻载时效率。 在进行反激式变压器设计时需考虑以下关键参数: 1. **磁芯选择**:材料影响性能如磁通密度、损耗和饱和电流。常用材料包括铁氧体和硅钢片。 2. **匝数比**:决定输入输出电压关系,根据实际需求确定。 3. **电感量**:与开关频率及最大储能相关,需通过计算确保有效存储释放能量。 4. **峰值电流**:避免磁芯饱和,需要考虑电路的峰值电流。 5. **热设计**:保证运行温度安全,防止过热导致性能下降或损坏。 反激式变压器设计软件的应用也十分关键。这类工具通常包含完整计算功能,帮助工程师快速准确完成设计任务: - 自动化尺寸和参数计算 - 预估效率、温升及噪声水平 - 评估磁芯材料特性 - 安全工作区(SOA)分析 使用这些软件可以节省时间并减少错误风险,提升整体设计质量。但理论理解同样重要,在遇到特殊情况时能灵活应对。 反激式变压器设计涉及电磁学、电路理论和热力学等多学科知识。结合基本原理及专业工具,工程师能够创建满足特定需求的高效可靠设计方案。进一步学习可参考《DCM反激式变压器设计》等资料。
  • 开关电源资料及变压器参数自动算(CCM和DCM
    优质
    本资料深入解析反激式开关电源的设计原理,并提供了一套用于计算不同工作模式下反激变压器参数的工具,涵盖连续导通模式(CCM)与不连续导通模式(DCM),助力工程师优化电源设计。 反激式开关电源全套设计资料包括反激变压器参数自动计算,在连续模式(CCM)和断续模式(DCM)下进行相关计算。 - 变压器参数计算: - 原边匝数计算 - 副边匝数计算 - 原边电感量计算 - 副边电感量计算 - 磁芯选取及线径选择: - 变压器磁芯选取 - 变压器线径选取 - 工作模式分析:变压器工作在三种不同的模式下进行详细计算。 - 元件选型与参数设定: - 输入电容选取 - 压敏电阻计算 - 保险丝参数选型计算 - 整流桥选择: - 输出电容设计: - RCD吸收回路分析及设计:
  • 变换器在DCM和CCM分析及对比
    优质
    本文深入探讨了反激式变换器在不连续导通模式(DCM)与连续导通模式(CCM)下的工作特性,并对其性能进行了详细的对比分析。 文章深入分析了反激式变换器在断续导通模式(DCM)与连续导通模式(CCM)下的特性,并进行了比较,非常适合初学者阅读。
  • 开关电源工作原理(CCM与DCM
    优质
    本文深入探讨了反激式开关电源在连续导通模式(CCM)和断续导通模式(DCM)下的工作机理及其特性。 反激开关电源主电路的工作原理包括电感电流连续模式和不连续模式的公式对比,这有助于从真正意义上理解反激电路。
  • 电源技术中DCMPFC转换器应用
    优质
    本文章探讨了在电源技术领域内,非连续导电模式(DCM)反激式功率因数校正(PFC)转换器的实际应用及其优势。通过深入分析DCM反激式PFC的工作原理、设计技巧以及性能优化策略,为相关领域的研究者和工程师提供有益参考。 在现代电源技术中,随着对能效及电网质量要求的提升,功率因数校正(PFC)技术变得越来越重要。反激式PFC转换器作为关键的一种PFC拓扑结构,在直流断续模式(DCM)下的应用因其独特的电路设计和工作原理而为电源系统带来了显著性能改进。 在DCM模式下工作的反激式PFC转换器,其输出电压调节采用的是电压型PWM控制。这种控制方式的一个重要特点是稳态占空比保持恒定,即开关元件的导通时间是固定的值。这一特性使得输入电流波形接近于正弦波,从而实现功率因数校正的关键目标:通过调整输入电流使其与输入电压同步相位和幅度一致,减少无功功率。 DCM反激式PFC转换器的基本结构是一个单环的电压反馈PWM控制系统(如图1(a)所示)。这种设计简化了控制电路,不需要额外的乘法器或电流控制器。在高频PWM开关作用下,输入电流呈现三角波形;虚线表示电流峰值iP的包络曲线,实线则代表一个开关周期内的平均值iV(av),这符合式(8-22)中提到的通过占空比Du控制等效电阻的概念。 从应用角度看,DCM反激式PFC转换器具有紧凑、高效的特性,在需要高功率因数和低谐波失真的场合特别适用。例如在数据中心、工业设备以及家用电器等领域,该类型转换器可以有效减少对电网的谐波污染,并提高能源效率以满足严格的电力供应标准。 总结来说,DCM反激式PFC转换器因其独特的设计与工作特性,在提升电源系统功率因数的同时简化了电路结构。这不仅减少了无功功率并降低了电网污染,而且在高功率因数和低谐波失真的要求下提供了高效的解决方案,因此成为现代电源设计中的重要组成部分。
  • 变压器.zip
    优质
    本资料深入探讨了反激式变压器的设计原理与应用技巧,涵盖其工作模式、参数计算及优化方法,适合电子工程师和相关专业学生参考学习。 反激电压器设计软件可以输入所需的交流直流参数来获取变压器的匝数与磁芯骨架选型。
  • SIMULINK变换器仿真型__SIMULINK仿真型_变换器
    优质
    本资源提供了一种基于MATLAB SIMULINK的反激式变换器仿真模型设计方法与实现,适用于电力电子领域的研究和教学。 反激式变换器使用SIMULINK搭建,在Matlab版本2014b上运行正常。
  • 转换器在电源技术中CCM与DCM电流波形分析
    优质
    本文深入探讨了反激式转换器在连续导通模式(CCM)和断续导通模式(DCM)下电流波形的特点及变化规律,为电源设计提供理论依据。 根据反激式转换器的基本工作原理,在主开关管导通的ton期间,变压器储存能量;而在主开关管关断的toff期间,变压器释放磁能并将其提供给负载。如果在一个完整的开关周期Ts结束时,变压器中仍有剩余的能量未完全释放,则可以认为该反激式转换器处于连续传导模式(CCM)。在这种情况下,初级绕组和次级绕组在每个开关周期内都会交替有电流流过。 相反地,在一个开关周期结束后,如果所有能量都被完全释放,那么反激转换器则工作于断续传导模式(DCM),其特点是:当主开关管关断时,有一段时间输入输出电流均为零。 CCM反激式转换器在连续导通模式和断续导通模式下的开关电流ir与负载电流il的波形分别如图所示。如果峰值电压为Ip,则对应的峰值电流I也会有所不同。