Advertisement

分支限界法用于解决装载问题。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
#include #include #include #includeusing namespace std;ifstream infile;ofstream outfile;class Node { friend int func(int*, int, int, int*); public: int ID; double weight;//物品的重量 }; bool comp1(Node a, Node b) //定义比较规则{ return a.weight > b.weight; } class Load;class bbnode;class Current { friend Load; friend struct Comp2; private: int upweight;//重量上界 int weight;//结点相应的重量 int level;//活结点在子集树中所处的层次 bbnode* ptr;//指向活结点在子集树中相应结点的指针 }; struct Comp2{ bool operator () (Current *x, Current *y) { return x->upweightupweight; }};class Load { friend int func(int*, int, int, int*); public: int Max0(); private: priority_queue, Comp2>H;//利用优先队列(最大堆)储存 int limit(int i); void AddLiveNode(int up, int cw, bool ch, int level); bbnode *P;//指向扩展结点的指针 int c;//背包的容量 int n;//物品的数目 int *w;//重量数组 int cw;//当前装载量 int *bestx;//最优解方案数组 }; class bbnode { friend Load; friend int func( int*, int, int, int*); bbnode* parent; bool lchild; }; //结点中有双亲指针以及左儿子标志int Load::limit(int i) //计算结点所相应重量的上界 { int left,a; left= c - cw;//剩余容量 a = cw; //b是重量上界,初始值为已经得到的重量 while (i <= n && w[i] <= left) { left -= w[i]; a += w[i]; i++; } return a;} void Load::AddLiveNode(int up, int cw, bool ch, int level) //将一个新的活结点插入到子集树和优先队列中{ bbnode *b = new bbnode; b->parent = P; b->lchild = ch; Current* N = new Current; N->upweight = up; N->weight = cw; N->level = level; N->ptr = b ; H.push(N);}

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    《装载问题的分支限界法解法》一文探讨了如何运用分支限界算法有效解决经典的装载问题,通过设置恰当的界限函数和搜索策略来优化计算效率与解的质量。 以下是简化并重新组织后的代码: ```cpp #include #include #include using namespace std; class Node { friend int func(int*, int, int, int*); public: int ID; double weight; // 物品的重量 }; bool comp1(Node a, Node b) { return a.weight > b.weight; } class Current { friend class Load; private: int upweight; // 重量上界 int weight; // 结点相应的重量 int level; // 活结点在子集树中所处的层次 bbnode* ptr; // 指向活结点在子集树中相应结点的指针 }; struct Comp2 { bool operator()(Current *x, Current *y) { return x->upweight < y->upweight; } }; class Load { friend int func(int*, int, int, int*); public: int Max0(); private: priority_queue, Comp2> H; // 利用优先队列(最大堆)储存 void AddLiveNode(int up, int cw, bool ch, int level); bbnode *P; int c; // 背包的容量 int n; // 物品的数量 int* w; // 重量数组 }; class bbnode { friend class Load; bbnode* parent; bool lchild; }; int Load::limit(int i) { int left = c - cw, a = cw; while (i <= n && w[i] <= left) { left -= w[i]; a += w[i]; ++i; } return a; } void Load::AddLiveNode(int up, int cw, bool ch, int level) { // 将一个新的活结点插入到子集树和优先队列中 bbnode *b = new bbnode; b->parent = P; b->lchild = ch; Current* N = new Current; N->upweight = up; N->weight = cw; N->level = level; N->ptr = b; H.push(N); // 插入到优先队列中 } int Load::Max0() { int i, bestw=0, up; P = nullptr; cw = 0; for (i = 1; i <= n && i != n + 1;) { int wt = cw + w[i]; if (wt <= c) { // 左儿子结点是可行的 bestw = max(bestw, wt); AddLiveNode(limit(i+1), wt, true, i + 1); } up = limit(i + 1); if (up >= bestw) AddLiveNode(up,cw, false, i + 1); Current* N = H.top(); P = N->ptr; cw = N->weight; up = N->upweight; delete N; ++i; } return bestw; } int func(int *weights, int c, int n) { Load K; for (int i=0;i> c >> n; weights = new int[n+1]; for (int i=0;i>weights[i+1]; bestp = func(weights, c, n); ofstream outfile(output.txt); // 输出文件 if (!outfile) { cerr << open error << endl; exit(1); } outfile<
  • 圆排列
    优质
    本研究探讨了利用分支限界算法高效求解圆排列问题的方法。通过优化搜索策略,旨在减少计算复杂度,提高算法在大规模数据集中的应用效率和解决方案的质量。 利用分支限界法解决圆排列问题,并求得最小的圆排列。每一步都包含详细的解释。编程语言使用C++。
  • 旅行商
    优质
    本研究探讨了运用分支限界算法来高效求解经典NP难问题——旅行商问题(TSP),旨在通过优化搜索策略减少计算复杂度。 网上关于用分支限界法解决旅行商问题的资料大多复杂且正确性不高。这是我花了两天时间完成的工作,过程非常辛苦。
  • 旅行商
    优质
    本文探讨了如何运用分支限界算法高效地求解经典的NP难题——旅行商问题(TSP),通过优化搜索策略以减少计算复杂性。 旅行商问题(TSP问题)是指给定一组n个城市以及它们两两之间的直达距离,寻找一条闭合的旅程路径,使得每个城市恰好经过一次且总的旅行距离最短。
  • 报告.doc
    优质
    本报告探讨了利用分支限界法解决装载问题的有效策略与算法实现,分析其优化过程及应用前景。 算法设计与分析实验报告附已通过源码供学习参考共勉♪目录摘要如下: 1. 问题描述 2. 实验目的 3. 实验原理 4. 实验设计(包括输入格式、算法、输出格式) 5. 实验结果与分析(除了截图外,还用图表进行了详细分析) 6. 结论 7. 程序源码
  • 0-1背包
    优质
    本文探讨了如何利用分支界限算法高效地求解经典的0-1背包问题。通过构建搜索树并应用上界函数来剪枝,该方法在保持解决方案最优性的同时显著减少了计算复杂度。 分支界限法可以有效地解决0-1背包问题。这种方法通过系统地搜索可能的解空间,并利用边界条件来剪枝,从而减少了不必要的计算量,提高了算法效率。在应用分支界限法求解时,首先需要定义一个合适的评估函数(界),用于估计每个节点对应的子树中是否可能存在最优解;然后从根节点开始进行广度优先或最佳优先搜索,在此过程中不断更新当前找到的最优解,并根据设定的边界条件排除那些不可能包含更优解的部分。通过这种方式,分支界限法能够在较大的问题规模下依然保持较高的求解效率和准确性。 这种方法适用于各种背包变种问题以及具有类似结构特征的应用场景中,如资源分配、项目选择等实际优化任务。
  • 的三种(贪心、回溯、
    优质
    本文章介绍了针对经典的装载问题,通过运用贪心算法、回溯算法以及分支限界算法进行求解的方法和步骤。 对比分析贪心法、回溯法以及分支限界法在装载问题中的应用,并探讨各算法的特性。
  • TSP
    优质
    本研究探讨了运用分支限界算法解决旅行商问题(TSP)的有效策略,通过优化搜索树结构来提高算法效率和准确性。 利用分支限界法解决TSP问题的源代码适合新手使用,代码中有大量的注释以帮助理解。
  • C语言中01背包
    优质
    本文介绍了如何在C语言编程环境中应用分支限界算法来有效地解决经典的01背包问题,通过优化搜索策略以达到更好的解空间探索效率。 分支限界法求解01背包问题的C语言程序已经调试通过,并打包为rar文件。
  • 单源最短路径
    优质
    本研究采用分支限界算法探讨并实现了解决单源最短路径问题的方法,通过优化搜索过程提高了计算效率。 最近一段时间没上传内容了,主要是因为这些天遇到了一些小事情。这里介绍的是用分支限界法求解单源最短路径问题的算法。