Advertisement

ANSYS CFX提供流体分析和仿真功能。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本书以CFX13.0作为基础,系统地阐述了CFX的使用方法,内容涵盖了CFX的内在理论与操作技巧,以及ICEM CFD网格生成、CFX前处理、CFX求解和CFX后处理等关键功能的详细介绍。此外,本书通过若干具有代表性的CFX案例,对CFX从网格划分到模型构建、从求解到后处理的完整流程进行了深入剖析,读者可以跟随实例一步步地学习如何完成CFX模拟,从而获得对CFX建模过程、求解策略以及后处理方法的深刻认识和实践经验。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ANSYS CFX仿教程
    优质
    《ANSYS CFX流体分析与仿真教程》一书深入浅出地介绍了如何使用CFX软件进行复杂流体动力学问题的建模、模拟和分析,适合工程师及研究人员阅读学习。 ANSYS CFX流体分析及其仿真的教程内容比较全面,质量不错。
  • ANSA CFX仿
    优质
    ANSA CFX是一款强大的工程软件组合,用于进行复杂流体动力学分析和高性能计算仿真,广泛应用于航空航天、汽车等行业。 本书以CFX13.0为基础,由浅入深、循序渐进地介绍了CFX的使用方法。内容涵盖CFX的基本理论与方法、ICEM CFD网格生成、CFX前处理、求解以及后处理等功能,并通过几个典型的实例详细讲解了从网格划分到模型建立,再到求解和后处理的全过程。读者可以依照这些实例逐步完成CFX模拟的实现,从而对CFX建模过程、求解理念及后处理方法有更深入的理解与掌握。
  • 基于ANSYS的磁仿
    优质
    本研究运用ANSYS软件进行磁流体动力学仿真与分析,探索磁场对流体流动及传热特性的影响,为工业应用提供理论支持。 ANSYS软件是一种用于工程仿真的工具,它能够帮助工程师模拟并分析各种物理现象,包括机械、流体动力学、电磁场及热传递问题。在磁流体流动的仿真分析中,利用ANSYS可以模拟磁性液体(即磁流体)在电磁场中的行为特性,在诸如液体流动控制、研磨和润滑等领域具有重要意义。 磁流体是由纳米级磁性颗粒悬浮于基础液体制成的一种特殊流体,它能够在外部磁场作用下改变自身的流动性质。因此,对这种材料进行仿真分析时必须同时考虑其流体力学与电磁学特性。 传统的计算流体力学(CFD)方法能够有效模拟磁流体的物理行为,但不够直观。ANSYS软件则提供了一个可视化的平台,支持工程师通过二维和三维模型来观察并详细解析流场的速度、能量分布以及流动状态等信息。 在研究中采用了电解质溶液作为电磁流体在磁场中的流动模式,并简化了方程及设置了适当的边界条件与初始值以解决求解难题。文中具体分析了单一圆柱绕流和两个并排的圆柱绕流,通过速度矢量图、云状速度分布图以及能量曲线展示了这些情况下的流动状态。 研究表明,在一个单独或成对排列的障碍物周围产生的涡旋会导致局部的速度增加,并在某些特定位置达到峰值。同时,由于阻力效应的存在,靠近物体表面的地方会形成低速区域。一旦流体绕过圆柱后继续前进,则其速度和能量分布将逐渐恢复到正常水平。 文中还讨论了电磁场下流动模型的基本理论假设:假定电流密度J与磁场强度B在垂直方向上均匀分布;认为液体为不可压缩且沿水平通道移动,忽略重力影响。此外,流体的物理属性如密度ρ、电导率σ和动力粘度μ均设定为恒值。基于这些前提条件建立了流动模型的基本方程,并通过ANSYS软件进行仿真计算。 借助于该软件提供的模拟结果可以深入了解磁流体在绕过障碍物时的速度变化及能量分布情况,这有助于预测与改善相关领域的技术性能。结合对流体力学和电磁学特性的综合分析,有望开发出新的应用技术和优化现有解决方案的效能,为特定行业提供理论指导和技术支持。
  • ANSYS固耦合仿
    优质
    简介:ANSYS流固耦合仿真分析是指利用ANSYS软件进行复杂工程问题中的流体与固体相互作用的模拟研究,适用于航空航天、汽车制造等领域的产品设计优化。 ANSYS流固耦合分析是一种结合了流体动力学与结构力学的高级仿真技术,用于研究在相互作用下系统的动态行为。这种分析方法能够帮助工程师深入了解复杂工程系统中的物理现象,并据此优化设计、预测性能以及确保安全运行。通过模拟不同工况下的应力应变和流动特性变化,ANSYS软件为用户提供了一个强大的工具来解决实际问题中遇到的挑战。
  • ANSYS 二维永磁仿
    优质
    本课程专注于使用ANSYS软件进行二维永磁体的电磁场仿真与分析,涵盖建模、求解及结果解读等环节。适合从事电机设计及相关领域的工程师学习。 磁性物质因其高导磁性能在电工设备中有广泛应用,例如电机、变压器及各种铁磁元件的线圈内都装有铁心。当这些含有铁心的线圈通过较小的励磁电流时,可以产生较强的磁场强度和磁通量。
  • ANSYS仿
    优质
    ANSYS热分析仿真是一种利用高级计算软件进行材料及结构在不同温度条件下的性能预测和评估的技术。通过模拟热量传递过程,帮助工程师优化设计、确保产品在实际使用环境中的可靠性和效率。 变压器的热分析可以通过软件有效实现,从而了解其发热情况分布。
  • ANSYS Workbench 电磁仿
    优质
    本课程深入介绍ANSYS Workbench在电磁场仿真领域的应用,涵盖从基础理论到高级技术的内容,帮助学员掌握利用该软件进行复杂电磁问题求解的能力。 ANSYS Workbench 在电磁方面的仿真实例展示了该软件在分析复杂电磁问题中的强大功能。通过使用 ANSYS Workbench 的相关模块,工程师能够对各种电气设备进行详细的电磁场模拟与优化设计,从而确保产品的高性能及可靠性。这些案例涵盖了从电机到天线的广泛应用领域,并为用户提供了一个直观且高效的工具来探索和解决实际工程挑战。
  • ANSYS动力学仿
    优质
    ANSYS动力学仿真分析是指利用ANSYS软件对机械、汽车等工程系统进行碰撞、跌落、动态应力等方面的模拟与预测,以优化设计和提高产品性能。 本段落将详细介绍ANSYS软件中的模态分析、谐响应分析以及瞬态分析,并阐述每个步骤中需要注意的事项及各分析的具体过程。
  • ANSYS CISPR25仿案例
    优质
    本案例深入剖析了利用ANSYS软件进行CISPR25标准电磁兼容性测试仿真的实践应用,详细展示了如何通过仿真优化产品设计。 《ANSYS CISPR25仿真案例解析》 在电子设备设计过程中,电磁兼容性(Electromagnetic Compatibility, EMC)是一个极为关键的考量因素。它确保了设备运行时不受到其他电子装置产生的电磁干扰,并且自身也不会对外部环境造成干扰。CISPR25是国际上针对车载电子设备电磁辐射发射制定的标准,对于汽车电子产品开发具有重要的指导意义。本段落将通过分析一个使用ANSYS软件进行的CISPR25仿真案例,深入探讨如何有效地进行电磁辐射仿真的方法。 首先我们需要理解CISPR25标准的具体内容:它是由国际无线电干扰特别委员会所发布的一系列关于车辆、农业和林业机械以及非道路移动设备在30MHz到1GHz频率范围内的电磁发射限值规定。其目标是确保这些设备在复杂的电磁环境中能够稳定运行。 案例中涉及的关键文件包括: - `CISPR25_RE_Chamber_with_Absorber.a3dcomp`:该模型包含吸波材料,用于模拟自由空间环境以减少反射并提高测量精度。 - `Connection_PCB_and_Cable.a3dcomp`:表示电路板(PCB)及连接电缆的三维几何模型,这是电磁辐射的主要来源。 - `PCB.a3dcomp`:单独的电路板模型,用以详细分析元件布局和布线对电磁发射的影响。 - `Biconical_Antenna_30Mhz_to_300MHz.a3dcomp`:双锥天线模型,在CISPR25标准中广泛使用于测量辐射强度。 - `CISPR25_RE_Chamber.a3dcomp`:基础的CISPR25辐射测量室模型,可能未包含吸波材料。 - `balun2.s2p`:平衡-不平衡转换器的S参数文件,用于连接双锥天线和测试系统。 - `Antenna_Factor_dB.tab`:提供有关天线增益与方向性数据的表格。 - `CISPR25_RE_Class_2_PeakLimits.tab`:定义了不同频段内最大允许辐射水平的Class 2峰值限值表。 仿真步骤通常包括: 1. **模型构建**:使用ANSYS Maxwell等电磁仿真工具创建电路板、电缆、天线及测量室的几何模型。 2. **材料属性设置**:为各部分指定正确的电磁特性,如导体电阻率和介电常数。 3. **网络定义**:导入PCB电路信息包括元件值与拓扑结构等影响电流分布和辐射模式的数据。 4. **边界条件设定**:应用吸波边界模拟自由空间环境以减少反射对测量结果的影响。 5. **求解及后处理**:执行仿真计算,分析辐射场分布、功率谱密度并将其与CISPR25标准限值进行比较,评估产品是否符合合规要求。 在实际操作中,工程师需要关注以下几点: 1. 辐射源定位:确定PCB上的主要辐射源头,并通过优化元件布局和布线来减少其影响。 2. 电缆设计:电缆长度、形状及其连接方式都会对辐射特性产生显著作用,因此需合理规划。 3. 吸波材料调整:改变吸波材料的厚度与位置以降低测量误差的影响。 4. 天线校准:确保天线因子准确无误从而获得可靠测试结果。 通过上述分析可以看出,ANSYS CISPR25仿真案例提供了一套完整的电磁辐射评估流程,帮助工程师在设计阶段预测并改进产品的EMC性能。这不仅可以避免后期因不符合标准而产生的额外成本和时间浪费,同时也体现了现代电子设计中仿真实验技术的重要性。
  • ANSYS Workbench 动力学仿
    优质
    本课程深入讲解ANSYS Workbench软件在动力学仿真中的应用,涵盖跌落、碰撞等场景模拟,助您掌握结构响应与损伤分析技巧。 ### ANSYS Workbench 动力学分析 #### 明晰动力学分析指南概览 在进行ANSYS Workbench的动力学分析时,首先需要了解整体的工作流程和技术要点。此部分概述了动力学分析的基本流程,帮助用户熟悉整个分析过程。 #### 明晰动力学工作流程 ##### 引言 在开始任何动力学分析之前,理解基本概念和工作流程至关重要。这有助于确保分析的准确性和有效性。 ##### 创建分析系统 创建分析系统是进行动力学分析的第一步。这包括定义分析类型、设置单元大小和其他初始参数。 ##### 定义工程数据 定义工程数据涉及材料属性、密度等关键信息的输入,这些数据对于准确模拟结构的行为至关重要。 ##### 附加几何体 将CAD模型导入到ANSYS Workbench中,并对模型进行必要的修改或简化,以便更好地适应动力学分析的需求。 ##### 定义部件行为 根据所研究问题的具体情况,需要为不同的部件定义特定的行为,如弹性、塑性等特性。 ##### 定义连接 在动力学分析中,正确定义部件间的连接对于模拟真实情况至关重要。 ###### 点焊在明晰动力学分析中的应用 点焊是一种常见的连接方式,在进行动力学分析时,需要准确地模拟这些点焊的效果。 ###### 部件间交互作用 在明晰动力学分析中,部件之间的相互作用是非常重要的一个方面,包括接触检测、公式化处理、壳厚度因子等。 ####### 接触检测 接触检测是指识别模型中可能发生接触的区域,这对于预测部件间的碰撞非常重要。 ####### 公式化处理 选择合适的接触公式化方法可以帮助更精确地模拟接触行为。 ####### 壳厚度因子与节点壳厚度 在处理薄壳结构时,正确设定壳厚度因子和节点壳厚度可以提高模拟精度。 ####### 部件自接触 部件自接触是指同一部件内部不同部分之间的接触,需要通过特殊设置来避免或模拟这种接触。 ####### 单元自接触 单元自接触指的是单个单元内不同部分之间的接触,这在复杂形状分析中尤为重要。 ####### 容差 容差设定用于确定接触检测的精度级别。 ####### 撞球因子 撞球因子用来控制模型中的接触行为,尤其是在高速碰撞情况下。 ####### 时间步长安全因子 时间步长安全因子是动力学分析中的一个重要参数,它直接影响模拟结果的稳定性。 ####### 限制时间步长速度 限制时间步长速度可以防止模拟过程中出现不稳定现象。 ####### 边缘对边缘接触 边缘对边缘接触是动力学分析中的一个特殊案例,需要特别注意其模拟方式。 ###### 交互类型属性 针对不同的交互类型(如无摩擦、有摩擦、粘合和增强),需要设置相应的属性来模拟其行为。 ##### 设置对称性 对称性设置能够显著减少计算时间和资源消耗,特别是在对称结构的分析中。 ###### 明晰动力学对称性 对称性设置对于明晰动力学分析来说非常有用,可以提高计算效率。 ###### 通用对称性 通用对称性适用于大多数结构分析,可以通过设置对称平面来简化模型。 ###### 全局对称平面 全局对称平面的定义可以帮助减少计算量,同时保持分析的准确性。 ##### 定义远程点 在动力学分析中,远程点的定义和设置对于模拟外部边界条件非常重要。 ##### 应用网格控制预览网格 合理的网格划分对于获得准确的动力学分析结果至关重要,需要根据模型特性和需求进行调整。 ##### 建立分析设置 分析设置包括多个方面,如时间步长控制、求解器设置、欧拉域控制等,这些都是确保分析结果准确性的关键因素。 ##### 定义初始条件 初始条件的定义对于模拟动态响应非常重要,包括初速度、初始应变等。 ##### 施加载荷和支持 在动力学分析中,正确施加载荷和支持条件是模拟真实情况的基础。 ##### 解算 解算是整个动力学分析过程的最后一环,通过求解器执行模拟并获取结果。 ANYS Workbench 动力学分析涵盖了从模型准备到结果解释的整个流程,每一步都至关重要。通过仔细定义每个步骤,用户可以确保获得高质量的模拟结果,从而支持设计优化和验证等工作。