Advertisement

微电网中风光储系统的功率控制策略研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究聚焦于微电网中的风光储系统,探索其功率控制策略,旨在优化可再生能源利用效率和提高电力供应稳定性。 风光储微电网功率控制策略的研究由肖朝霞和贾双进行。该研究将具有间歇性和随机性特点的小型风电、光伏发电与蓄电池结合成微电网,以充分发挥可再生能源发电的潜力,并解决其并网所带来的输出功率问题。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究聚焦于微电网中的风光储系统,探索其功率控制策略,旨在优化可再生能源利用效率和提高电力供应稳定性。 风光储微电网功率控制策略的研究由肖朝霞和贾双进行。该研究将具有间歇性和随机性特点的小型风电、光伏发电与蓄电池结合成微电网,以充分发挥可再生能源发电的潜力,并解决其并网所带来的输出功率问题。
  • 孤立
    优质
    本文探讨了在光储微电网孤立运行状态下,优化储能系统的控制策略,以提高能源利用效率和系统稳定性。 本段落分析了微电网孤岛系统稳定运行及能量供求平衡的机理,并探讨了常规微电网孤岛能量管理控制策略。在此基础上,提出了一种新型超级电容与蓄电池混合储能系统的功率自适应控制策略。通过上层的能量管理控制,该方法合理分配超级电容和蓄电池输出功率,满足微电网孤岛运行时对电能质量和负荷需求的要求,并提高系统全寿命周期经济性。 研究建立了微电网孤岛系统的仿真模型,在PSCAD/EMTDC环境中进行了验证,证明了所提策略的有效性。此控制策略优化了电池的工作过程,延长其使用寿命,同时无需数据采集和通信环节,从而提高了微电网孤岛系统的运行可靠性和稳定性。
  • 关于压穿越.pdf
    优质
    本文探讨了光储微电网在电力系统中的应用,并深入研究了其低电压穿越(LVRT)控制策略,以提高系统的稳定性和可靠性。 光储微电网的低电压穿越控制策略研究
  • 双馈感应力发
    优质
    本研究探讨了双馈感应风力发电系统在微电网中的应用与优化,着重分析其控制策略,以提高能源利用效率和稳定性。 本段落提出了一种针对微电网中的双馈感应风力发电系统的控制方法。在并网运行状态下,该系统能够通过捕获最大风能来优化性能,并利用灵敏度分析法调整输出无功功率以抵消有功功率变化导致的电压波动。而在孤岛模式下,双馈感应发电机(DFIG)则会采用可调幅值和频率的方式进行控制,并模仿下垂特性直接与其他采取相同策略的分布式电源协同工作。 仿真结果表明,所提出的方案能够有效地调节微电网中的有功功率平衡并维持系统的电压稳定性,在无论是并网还是孤岛运行状态下都能确保微电网平稳运作。
  • 伏直流PV池建模、MPPT最大点跟踪及;含蓄能与参考文献
    优质
    本研究专注于光伏直流微网储能系统中PV电池模型建立、MPPT(最大功率点跟踪)技术及其控制策略的优化,特别关注了蓄电池储能系统的性能提升,并详细引用相关文献资料进行理论验证。 在传统的独立光伏发电系统中,蓄电池直接连接到直流母线会导致充放电电流无法得到有效控制。当负载发生变化时,这可能导致过大的充放电电流,从而损坏蓄电池;因此,在系统的直流母线与蓄电池之间加入一个DC-DC变换器是必要的,以确保对蓄电池的充放电进行有效管理。 独立光伏发电系统主要由太阳能电池、蓄电池和双向/单向DC-DC变换器构成。这种系统设计简洁,并且通过使用同一个双向变换器来实现蓄电池的充电和放电功能,有助于减轻系统的重量并优化能量流动控制。关键在于根据太阳光强度与蓄电池的状态调整单向及双向转换器的工作模式,以确保太阳能电池与蓄电池之间的协调工作。 为了保证供电系统的正常运行,系统需要满足以下条件: 1. 当系统处于正常运行状态时,单向变换器应执行最大功率点跟踪(MPPT)操作。如果太阳能无法提供足够的能量来支持负载需求,则由通过双向DC-DC变换器从电池中补充所需的电力。 2. 若光照强度不足以满足系统的供电需求,将利用储能装置中的电能进行补偿。 以上设计确保了系统能够高效地管理能源流动,并且保护蓄电池免受过大电流的损害。
  • 滤波与并
    优质
    本研究探讨了在微电网环境中,针对蓄电池储能系统优化其滤波技术和并网控制策略的方法,以提升电力质量及系统稳定性。 针对微网中的蓄电池储能系统在充放电过程中存在的高谐波含量问题,在DC/DC与DC/AC变流器之间加入LC滤波器以去除低次谐波,并在DC/AC变流器与电网接口处添加LCL滤波器来抑制高次谐波。此外,通过改进传统的PQ控制策略,采用逆变器侧电感电流和网侧电感电流的加权值作为内环电流控制器的输入信号,从而降低了解耦分量中的纹波含量,并减少了储能系统的电压源特性和LCL滤波器阻抗特性对系统性能的影响。这使得控制系统具有更高的精度与响应速度。同时,通过使用隔离变压器来调整逆变器输出电压,确保并网后的电压稳定性。 构建仿真模型进行模拟验证表明:双层滤波结构和改进的控制策略能够显著提升蓄电池储能系统的电能质量。
  • 机组调频建模与
    优质
    本研究聚焦于火电机组运行中的频率调节问题,探讨并建立储能系统的数学模型及其优化控制策略,以提高电力系统的稳定性和响应速度。 全球能源互联网的概念得到了广泛认同,旨在通过清洁能源替代化石燃料,并逐步实现以清洁能源为主导、化石燃料为辅助的新型能源结构。然而,风电与太阳能发电这类可再生能源由于其输出功率具有波动性和随机性,在大规模并网时可能引发电网频率稳定性问题。特别是在中国“三北”地区,用于调节电力系统频率的主要手段是火电机组,但这些机组在调频能力和效率方面存在不足。 相比之下,新兴的储能技术具备快速且精确调整功率的能力,能够辅助火电机组更好地参与电网调频过程,并有效提升和改善系统的整体频率响应能力。本段落首先探讨了传统火电机组的一次与二次调频机制以及大规模储能在物理结构及运行控制上的特点;利用PSCAD/EMTDC仿真软件建立了详细的动态模型,包括DEH调节器、汽轮机系统、CCS协调控制系统和锅炉等组件,并在此基础上构建了一套适用于理论分析的简化模型。此外还设计了储能系统的具体电路模块——如能量储存单元、VSC有源逆变器以及直流-直流双向转换装置。 结合火电机组与储能在实际操作中的特性,本段落提出了一个分层控制架构下的协调策略方案:该系统能够使储能技术有效地支持传统发电机组完成一次和二次频率调节任务。
  • 针对混合一种分配
    优质
    本文提出了一种适用于微电网中混合储能系统的功率分配策略,旨在优化能量管理、提高效率并延长设备寿命。该方法通过精确调控不同类型储能装置的充放电状态,有效应对可再生能源波动与负荷变化带来的挑战,确保电力供应稳定可靠。 混合储能系统结合了功率型和能量型储能设备的优点,在微电网的应用中能够有效平抑波动性功率。采用直流母线并联方式的超级电容器与蓄电池组成的混合储能系统,通过蓄电池单元保持直流母线电压稳定,并由超级电容器跟踪参考电流来实现动态功率分配。基于该系统的功率损耗模型,提出了一种考虑超级电容器荷电状态和整体能量损失的优化策略。此方法在光伏发电系统的输出平滑控制中得到了验证,仿真结果表明所提出的控制策略具有有效性。
  • 关于机组并飞轮与仿真(2012年)
    优质
    本研究针对风力发电并网中的功率波动问题,探索了利用飞轮储能技术进行平滑调节的方法,并通过仿真验证了其有效性和可行性。 风速的随机性会导致并网输出有功功率波动,影响电能质量和系统稳定性。为解决这一问题,提出了一种利用飞轮储能系统来平滑风电机组并网功率波动的方法。选择无刷直流电机作为驱动电机,并在分析其工作原理及数学模型的基础上,结合风电场的功率控制需求,设计了转速电流双闭环调速方案。此外,在Matlab/Simulink中建立了飞轮储能系统与永磁直驱风力发电系统的双PWM变流器直流侧并联进行功率平滑的仿真模型。仿真实验验证了该控制系统和功率平滑方法的有效性。