本文介绍了如何使用JavaScript语言实现高斯投影坐标系中的正反算算法,并提供了实用代码示例。
正算经度0.001m的公式为:
\[ N_{\text{metre}} = X + N \cdot tB \cdot \frac{(cB \cdot l)^2}{2} + N \cdot tB \cdot (5 - tB^2 + 9itaf + 4(itaf)^2) \cdot \frac{(cB \cdot l)^4}{24} + N \cdot tB \cdot (61 - 58tB^2 + tB^4) \cdot \frac{(cB \cdot l)^6}{720}; \\
E_{\text{metre}} = N \cdot cB \cdot l + N(1 - tB^2 + itaf) \cdot (cBl)^3 / 6 + N(5 - 18tB^2 + tB^4 + 14itaf - 58itaf(tB)^2)(cBl)^5/120+500000; \\
\]
反算经度0.0001的公式为:
\[ B_{\text{degree}} = Bf - tBf \cdot \frac{(y^2)}{2MfNf} + tBf(5 + 3(tB)^2 + itaff - 9itaff(tB)^2) \cdot (y^4)/(24Mfn^{3}) - tBf(61+90tB^2+45tB^4)(y^6)/720(Mfn^{5}); \\
L_{\text{degree}} = y / (NfcBf) - (1 + 2(tB)^2 + itaff)y^3/(6(Nf)^3cBf) + (5+28tB^2+24tB^4+6itaff+8itafftB^2)(y^5)/(120N^{5}c_{\text{bf}}); \\
\]
参考文献:孔祥元,郭际明,刘宗泉.大地测量学基础