Advertisement

Vchuli.rar_风力发电数据_风力预测_数据预测_风力发电预测

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:RAR


简介:
本资源包含风力发电相关的数据集,适用于风力预测和发电量预测模型的研究与开发。 根据福建PT风力发电机组的日出力统计数据,可以估计风速并建立模型进行预测。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Vchuli.rar____
    优质
    本资源包含风力发电相关的数据集,适用于风力预测和发电量预测模型的研究与开发。 根据福建PT风力发电机组的日出力统计数据,可以估计风速并建立模型进行预测。
  • 集ZX
    优质
    风力发电预测数据集ZX包含详细的气象与发电量信息,旨在提升风电场短期至中期功率输出预报精度,促进可再生能源高效利用。 风力发电量预测数据集包含风速、转速、发电量等相关数据,记录时间从2019年11月至2019年12月,读数间隔为每十分钟一次。
  • 的CSV
    优质
    本数据集包含用于风力发电预测的各类气象和运行参数,旨在支持研究者开发更精确的风电输出预测模型。 构建风电功率预测模型,利用测风塔采集的风速、风向、气温、气压及湿度数据进行发电功率预测。 CSV文件格式如下: 第一列为时间; 中间列包含10米、30米、50米和70米高度处的风速与风向信息以及气温、气压和湿度等特征; 最后一列表示风电场发电功率的预测值。 具体的数据包括以下内容: - 10m, 30m, 50m 和70m 的风速(WS) - 30m, 50m 和70m 的风向(DIR) - 龙骨高度处的风速和风向 (WSHUB, DIRHUB) - 气温(TEMP)、气压(PRESSURE)以及相对湿度(RH) 示例列名: TIME, WS10, DIR10, WS30, DIR30, WS50, DIR50, WS70, DIR70, WSHUB, DIRHUB, TEMP, PRESSURE,RH
  • 的CSV
    优质
    本数据集包含用于风力发电预测的相关CSV文件,记录了详尽的历史气象及发电信息,旨在支持研究人员与工程师开发更精准的风电预测模型。 构建风电功率预测模型,利用测风塔采集的风速、风向、气温、气压及湿度数据进行发电功率预测。 CSV格式文件结构如下: 第一列为时间; 中间列包含10米、30米、50米和70米高度处的风速(WS)与相应方向(DIR),以及龙骨高度处的风速(WSHUB)、方向(DIRHUB)、气温(TEMP)、气压(PRESSURE)及湿度(RH); 最后一列为预测值。 数据说明: 使用测风塔中的测量信息,包括不同高度层的风速和风向、气象参数如温度、压力与相对湿度。
  • 功率
    优质
    风力发电功率预测是通过分析气象数据和风电机组特性,对未来的风电场输出进行预估的技术。它对于优化电网调度、提高可再生能源利用率具有重要意义。 本段落根据历史功率数据预测风电机组的输出功率,并分别介绍了时间序列法、网络神经法和灰度法这三种方法。
  • 功率.rar
    优质
    本研究专注于开发先进的算法模型以提高风力发电场的功率预测精度,旨在优化可再生能源利用效率。 风电功率预测是现代能源系统中的关键环节,在风能作为主要可再生能源的背景下尤为重要。其准确性直接影响电力系统的稳定运行、电力市场的交易以及风电场的经济效益。 本资料包含了关于风电功率预测的相关研究和算法应用,涉及通过对气象条件(如风速、风向)分析来预测未来一段时间内风电场输出功率的技术。这项任务复杂且多变,因为影响因素众多,包括地理位置、地形、季节变化及大气湍流等。通常采用历史数据与实时监测信息结合气象模型进行预测。 在算法方面,常用的方法有时间序列分析、统计模型(如ARIMA)、机器学习算法(支持向量机、随机森林和神经网络)以及深度学习模型(如长短时记忆网络LSTM)。这些方法各有优缺点:例如,时间序列适合短期预测;而深度学习则擅长处理复杂非线性关系,但需要大量数据与计算资源。 资料中的数据集或代码文件可能包含各种气象参数、风电场实际功率记录及预测结果等信息。研究者可利用这些数据训练和验证模型,并评估不同算法在精度与效率方面的性能表现。 尽管现有技术已取得进展,但在风速预测不确定性、异常事件适应能力以及大规模风电场集成后的系统动态特性等方面仍面临挑战。因此,该领域需要更多专家和技术人员进行深入研究以提高风电功率预测的准确性和可靠性。 总之,风电功率预测是一个跨学科问题,涉及气象学、统计学和计算机科学等多个领域。通过持续的技术创新与算法优化,未来有望实现更精准的风能利用及电力系统的可持续发展。
  • 集(含28201条记录)
    优质
    本数据集包含28,201条详细的风力发电相关记录,旨在为研究人员和工程师提供一个全面的资源库,用于开发和优化风能预测模型。 根据风机的ID(tracking_id)、日期时间、风速(m/s)、大气温度(°C)、轴温(°C)、叶片角度(°)、齿轮箱温度(°C)、发动机温度(°C)、电机转矩(N-m)、发电机温度(°C)、大气压力(帕斯卡)、面积温度(°C)、风车车体温度(°C)、风向(°),电阻(欧姆),转子转矩(N-m)、状态,云层高度,叶片长度(m),风车高度(m)等参数来预测风力发电的发电量。
  • 气类(2017-2019: 速、转速、量).txt
    优质
    本文件包含了2017年至2019年间详细的电气类风力发电预测数据,包括每日的风速、转速以及相应的发电量记录。 电气类62. 2017-2019风力发电预测数据(包括风速、转速、发电量)的文本段落件中包含下载链接,请放心下载!
  • 分析
    优质
    风电场电力预测分析是一套利用气象数据与风电机组特性评估未来一段时间内风电场发电量的技术方法,旨在提高电网调度灵活性和可再生能源利用率。 ### 风电场的电功率预测 #### 一、风电功率预测背景及意义 风能作为一种可再生且清洁的能源,在全球范围内备受重视。随着技术进步与成本下降,风力发电已成为最具规模化开发和技术经济条件优势的非水再生能源之一。然而,由于其固有的波动性和间歇性特征,电网的安全稳定运行面临挑战。为了减轻风电功率波动对电网的影响,并提升电力系统的整体效率和可靠性,风电功率预测技术成为研究的重点。 #### 二、风电功率预测方法与实践 ##### 2.1 实时预测方法及误差分析 **预测方法选取:** - **ARIMA模型**:自回归积分滑动平均模型是一种经典的时间序列分析工具,适用于具有趋势和季节性的数据。该模型能够捕捉到风力发电量中的长期趋势和短期波动。 - **神经网络模型**:如长短时记忆网络(LSTM),可以处理非线性关系及长序列数据,非常适合用于风电功率预测。 - **支持向量机(SVM)**:在小样本集上表现良好,适用于拟合复杂的非线性关联。 **预测对象包括单台风电机组的功率PA、PB、PC和PD,以及多台风电机组合并后的总功率P4与全场总功率P58。** **误差分析依据国家能源局制定的相关标准进行评估,通常采用均方根误差(RMSE)和平均绝对误差(MAE)等指标来衡量预测精度。 ##### 2.2 风电机组汇聚的影响分析 风力发电机组的组合能够平滑风电功率波动性,从而减少预测误差。这是因为单一风电机组受局部气象条件影响较大,而多台风机总功率则受到多种因素共同作用,在一定程度上可相互抵消。 **具体步骤如下:** 1. **计算单台发电机功率预测误差**。 2. **分析多台机组组合后的总体功率预测误差**。 3. **对比不同情况下的误差表现,观察差异性。** 预期规律表明: - 多台风电机组的总功率波动通常比单一发电单元更稳定。 - 伴随风力机数量增加,整体预测精度有望提高。 #### 三、提升风电功率预测准确度的方法探讨 ##### 3.1 方法改进策略 为增强风电功率预测精确性,可以考虑以下途径: - **模型融合**:结合ARIMA模型、神经网络和支持向量机的优势构建混合模式。 - **引入外部数据源**:如气象信息和地形资料等以提升预测准确性。 - **优化参数设置**:利用网格搜索或遗传算法等方式对模型进行调优。 ##### 3.2 实验验证 通过在相同数据集上对比不同方法的性能,评估改进措施的有效性。同时需注意考察模型复杂度与训练时间等因素的影响。 #### 四、总结及未来展望 尽管风电功率预测技术已取得显著进展,但仍存在局限性。未来的研究可以从以下几个方面着手: - **提升数据质量**:获取更高精度和频率的数据。 - **开发更先进的预测工具**:利用深度学习等新技术提高预测准确性。 - **增强模型鲁棒性**:使模型能够更好地适应各种天气条件下的任务需求。 风电功率预测是一项充满挑战的任务,但随着技术不断创新与方法优化,有望显著提升其精准度,从而为电力系统的安全稳定运行提供强有力支持。
  • 基于历史的短期概率模型.7z
    优质
    本研究开发了一种利用历史风电场数据进行短期风力发电量概率预测的新模型。该模型能够有效提高预测精度,为电网调度提供有力支持。文件格式为.7z压缩包,内含相关算法代码和实验数据。 标题中的“利用历史风电场数据预测短期风力发电的概率模型”是一个典型的机器学习或统计建模项目,旨在通过分析过去风电场的发电数据,构建一个概率模型,以预测未来的短期风力发电情况。这种预测对于电力系统调度、能源管理以及风电场的运营决策具有重要意义。 描述中提到“简单程序和风电数据”,这表明提供的压缩包可能包含两部分核心内容:一是用Python编写的代码,用于处理数据和构建预测模型;二是风电场的历史发电数据,这是训练和测试模型的基础。Python是一种广泛用于数据分析和机器学习的语言,其丰富的库如Pandas、NumPy和Scikit-learn等,使得数据预处理和模型构建变得高效。 从标签“电气”来看,这个项目涉及的是电力工程领域的应用,特别是可再生能源——风能的利用。风电的不确定性对电网稳定性和电力市场交易带来了挑战,因此准确的短期风力预测对于电力系统的平衡和安全至关重要。 “数据集”标签提示我们,压缩包内可能包含一个或多个数据文件,这些文件可能以CSV或其他格式存储,包含风速、风向、发电机功率等关键变量。数据预处理是建模前的关键步骤,包括清洗、缺失值处理、异常值检测和时间序列转换。 “程序”标签意味着压缩包内有源代码文件,可能是用Python编写的脚本,用于加载数据、进行数据探索、特征工程、模型训练、验证和预测。这些脚本可能使用了数据科学中的常见技术,例如线性回归、时间序列分析(如ARIMA模型)、随机森林和支持向量机等。 综合以上信息,我们可以预见这个项目将涵盖以下知识点: 1. **时间序列分析**:理解风力发电的时序特性以及如何处理具有时间依赖性的数据。 2. **数据预处理**:清洗和准备数据,包括缺失值和异常值的处理、归一化或标准化等步骤。 3. **特征工程**:提取与风力发电相关的特征,如风速、风向、温度和湿度等变量。 4. **Python编程**:使用Python进行数据分析和模型构建,例如利用Pandas操作数据,并用Matplotlib或Seaborn进行可视化。 5. **机器学习模型**:训练并评估各种机器学习算法,包括线性回归、决策树、随机森林以及神经网络等方法。 6. **模型验证与优化**:应用交叉验证技术来调整超参数和提高预测性能,通过RMSE(均方根误差)或MAE(平均绝对误差)度量模型的准确程度。 7. **风电场运行原理**:了解风力发电机的工作机制,并掌握如何将风速转换为电能的过程。 8. **电力系统调度**:理解短期风力预测在电力市场和电网调度中的重要性。 通过这个项目,不仅可以学习到数据科学与机器学习的技术知识,还能加深对可再生能源领域的认识。实际操作有助于提升解决类似问题的能力,并为进一步从事清洁能源领域的工作奠定坚实基础。