Advertisement

常微分方程的Maple和MATLAB求解方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本书聚焦于使用Maple和MATLAB软件来解析与数值求解各类常微分方程问题,通过实例深入浅出地介绍这两种工具的应用技巧。 该书是一本结合常微分方程基础理论、基本方法与数学软件应用的教材。它保持了现有通用教材中的完整理论体系,并提供了多样化的解题技巧。书中通过问题导向的方式引导读者发现解决问题的方法,进而引出重要的概念、命题和定理,体现了“诱导发现法”的教学理念。本书采用B.Van Rootselaar方法求解常系数齐次线性方程组,并展示了这种方法在计算机实现中的优越性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MapleMATLAB
    优质
    本书聚焦于使用Maple和MATLAB软件来解析与数值求解各类常微分方程问题,通过实例深入浅出地介绍这两种工具的应用技巧。 该书是一本结合常微分方程基础理论、基本方法与数学软件应用的教材。它保持了现有通用教材中的完整理论体系,并提供了多样化的解题技巧。书中通过问题导向的方式引导读者发现解决问题的方法,进而引出重要的概念、命题和定理,体现了“诱导发现法”的教学理念。本书采用B.Van Rootselaar方法求解常系数齐次线性方程组,并展示了这种方法在计算机实现中的优越性。
  • MATLAB-MATLAB.pdf
    优质
    本PDF文档深入讲解了如何使用MATLAB软件进行常微分方程及其方程组的有效求解,涵盖基础概念、编程技巧及实例应用。适合工程和科学计算领域的学习者和技术人员参考。 Matlab常微分方程和常微分方程组的求解方法涉及使用内置函数如ode45来解决数学问题中的这类方程。通过编写适当的函数文件定义方程,用户可以利用Matlab的强大功能进行数值计算与分析。文档详细介绍了如何设置初始条件、参数以及输出结果的方式,帮助学习者掌握这些工具的应用技巧。
  • MATLAB数值
    优质
    本文章介绍了在MATLAB环境下求解常微分方程的各种数值方法,包括欧拉法、龙格-库塔法等,并提供了实例代码。 常微分方程的数值解法包括ode45、ode15i等等。涉及隐函数和边值问题等内容。
  • 数值
    优质
    本文章介绍了几种常用的求解常微分方程数值解的方法,旨在帮助读者理解和应用这些技术解决实际问题。 常微分方程的数值解法主要包括欧拉方法和龙格库塔方法。这两种方法便于学习和查阅。
  • MATLAB代码
    优质
    本简介提供了一段用于在MATLAB环境中求解常微分方程(ODE)的代码示例。通过简洁明了的方式展示如何使用内置函数如ode45,帮助初学者快速掌握基本方法和技巧。 本段落提供了一个包含两种求解常微分方程方法的MATLAB代码,并且经过测试可以正常使用。
  • MATLAB中偏
    优质
    本简介探讨在MATLAB环境下解决偏微分方程(PDE)的各种策略与技巧,包括内置函数的应用、数值方法的选择以及编程实现。 非稳态偏微分方程组是一个较为复杂的难题,在热质交换等领域经常遇到。因此,需要开发一套程序来求解这类问题的数值解。
  • MATLAB欧拉数值
    优质
    本文章介绍了使用MATLAB软件实现欧拉方法来解决常微分方程组的数值问题,并提供了详细的编程步骤和实例。 用Euler法求解常微分方程组的数值解,并采用了细胞数组来简化代码。整个程序非常简洁,除了注释外的有效代码只有二十行左右。这是几年前上传的一个程序,当时需要20积分获取,现在降低到只需5个积分即可获得。
  • Adams-Bashforth-Moulton数值matlab开发
    优质
    本项目采用Adams-Bashforth-Moulton预测校正公式,利用Matlab实现求解常微分方程初值问题的高效算法。 求解一阶常微分方程的数值方法包括单步法和多步法: 1. 欧拉方法; 2. 亨氏法; 3. 四阶 Runge Kutta 方法; 4. Adams-Bashforth 方法; 5. Adams-Moulton 方法。 这些方法通常用于求解初始值问题(IVP),一阶初始值问题被定义为一个一阶微分方程和在 t=t₀ 处指定的初始条件: y = f(t,y) ; t0 ≤ t ≤ b y(t₀) = y₀
  • 四阶Runge-KuttaMATLAB
    优质
    本文介绍了如何使用四阶Runge-Kutta方法通过MATLAB编程来解决复杂的常微分方程组问题,提供了一种高效、准确的数值计算方案。 常微分方程组的四阶Runge-Kutta方法是一种常用的数值求解技术。这种方法通过迭代计算来逼近非线性系统的解,在工程、物理等多个领域有广泛应用。其核心在于利用函数在不同点上的斜率加权平均,从而提高精度和稳定性。