Advertisement

傅里叶分析-河田龙夫

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《傅里叶分析》是河田龙夫撰写的一本深入浅出介绍傅里叶变换及其应用的数学著作,适合对信号处理和数学分析感兴趣的读者。 关于傅里叶分析有一本不错的书推荐给大家,有兴趣的话可以找来看看。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • -
    优质
    《傅里叶分析》是河田龙夫撰写的一本深入浅出介绍傅里叶变换及其应用的数学著作,适合对信号处理和数学分析感兴趣的读者。 关于傅里叶分析有一本不错的书推荐给大家,有兴趣的话可以找来看看。
  • 详解
    优质
    《傅里叶分析详解》是一本深入浅出介绍傅里叶变换及其应用的专业书籍,适合工程学、物理学及数学领域的学者和学生阅读。 傅里叶分析是18世纪逐渐形成的一个重要数学分支,在分析学领域占有举足轻重的地位。它主要研究函数的傅里叶变换及其性质,并且又被称为调和分析。经过近200年的发展,其研究范围已经从直线群、圆周群扩展到了一般的抽象群,后者的研究则被称作群上的傅里叶分析。作为数学的一个分支,傅里叶分析不仅在概念上影响了其它的数学领域,在方法论层面也产生了深远的影响,并且很多重要的数学思想都是在其发展过程中形成的。
  • 离散变换
    优质
    离散傅里叶变换(DFT)是一种将时域信号转换到频域表示的方法,被广泛应用于数字信号处理、图像处理和数据压缩等领域。 离散傅里叶变换(Discrete Fourier Transform, DFT)是数字信号处理中的核心概念。它能够将一个离散时间序列转换到频域进行分析,在MATLAB中被广泛应用于信号频率分析、滤波器设计以及图像处理等领域。DFT的公式表示为:\[ X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N} \] 这里,\(X[k]\)代表离散傅里叶变换的结果,\(x[n]\)是输入序列,而\(N\)则对应于该序列的长度。在提供的压缩包中包含有三个MATLAB M文件: 1. **dftuv.m**:此文件可能实现了DFT的功能,并且很可能使用了MATLAB内置的`fft`函数来高效地计算离散傅里叶变换,返回结果包含了所有频率成分的复数值。 2. **lpfilter.m**:该文件很可能是用来实现低通滤波器功能。通过在频域中保留低频部分并消除或削弱高频部分,它可以用于去除噪声或者平滑信号。这个函数可能采用乘以一个适当的窗函数或是直接将DFT系数的高频部分设置为零的方式来完成滤波操作。 3. **paddedsize.m**:此文件或许涉及到了数据填充的操作,在进行离散傅里叶变换时为了提高计算精度或避免边界效应,常常会对原始序列执行零填充。虽然这会增加计算量,但能够提供更精确的频率分辨率。 MATLAB程序通常由用户定义的函数和主程序构成。在这个例子中,DFT.m应该是主程序,并且它调用了上述两个辅助函数来完成整个流程:首先通过dftuv.m计算序列的离散傅里叶变换;然后根据需要利用lpfilter.m对得到的结果进行低通滤波处理;如果使用了paddedsize.m,则可能在执行DFT之前先将原始序列零填充以改变其大小。 对于信号处理和图像分析的研究人员而言,理解离散傅里叶变换及其MATLAB实现至关重要。这包括掌握如何计算DFT、设计及应用滤波器,以及何时需要进行数据填充来改善计算结果的准确性。通过深入研究这些脚本段落件的内容,初学者可以更好地理解和运用离散傅里叶变换的相关知识和技能。
  • 简短变换
    优质
    简短傅里叶变换(Short-Time Fourier Transform, STFT)是一种用于分析时间序列数据局部频率内容的技术,尤其适用于音频信号处理和语音识别等领域。它通过将信号分割为一系列短时间段,在每个时间段内应用傅里叶变换以获取该时段内的频谱信息,从而能够捕捉到非平稳信号的时变特性。 使用MATLAB对仿真信号进行短时傅里叶变换需要利用MATLAB的时频分析工具箱。
  • dmt.rar_dmt_ MATLAB_matlab 变换
    优质
    本资源包提供了关于DMT(离散多音调)技术及其MATLAB实现的资料,包括利用傅里叶变换进行信号处理的相关代码和文档。 MATLAB中的FFT(快速傅里叶变换)和DCT(离散余弦变换)是两种常用的信号处理技术。这两种方法在分析音频、图像和其他类型的数据中非常有用,能够帮助用户更好地理解数据的频域特性。通过使用这些工具箱函数,开发者可以方便地实现复杂的数学运算,并且MATLAB提供了丰富的文档和支持来辅助学习和应用这些算法。
  • 数阶变换.doc
    优质
    本文档探讨了分数阶傅里叶变换的基本理论及其在信号处理领域的应用分析,深入研究其特性与优势。 在雷达信号处理中,分数阶傅里叶变换扮演着重要角色。本段落将介绍其原理及实现方法。
  • 的应用探讨
    优质
    《傅里叶分析的应用探讨》一文深入浅出地介绍了傅里叶变换的基本原理及其在信号处理、图像压缩等领域的广泛应用,旨在帮助读者理解并掌握这一重要的数学工具。 讲解了傅里叶原理,并通过实例展示了其应用。
  • 变换
    优质
    分数傅里叶变换是一种信号处理中的数学工具,它扩展了传统傅里叶变换的概念,能够在介于时域和频域之间的任意角度分析信号。 分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是传统整数阶傅里叶变换(Fast Fourier Transform, FFT)的一种扩展,在信号分析与处理领域中有着重要的应用价值。它不同于传统的FFT,其旋转角度可以取任意实数值,而非局限于π的倍数,这使得FRFT能够提供非均匀频谱信息,并为复杂时频结构的信号如瞬态和非平稳信号提供了更丰富的解析视角。 传统傅里叶变换将时间域中的信号转换到频率域中以揭示其频率成分。而分数阶傅里叶变换则通过连续的角度变化,介于时间和频率之间,能够从不同的角度展现信号的时频特性。这种灵活性为分析复杂信号提供了一个新的方法论基础,并且特别适用于那些具有非平滑或瞬变特性的数据。 分数阶傅里叶变换基于数学中的辛运算和矩阵表示来定义: \[ \mathcal{F}^{\alpha}{x(t)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x(\tau) e^{-i\alpha \omega t} d\tau \] 其中,α 是变换的分数阶参数,ω 和 t 分别表示频率和时间变量。与整数阶傅里叶变换不同的是,在FRFT中逆变换可以通过使用 α 的共轭负值来实现。 在实际应用方面,分数阶傅里叶变换可以用于: 1. **时频分析**:由于能够灵活调整角度,它能更精确地描绘信号的时频分布特性。 2. **数据压缩**:通过选择合适的α参数突出关键特征从而优化存储效率。 3. **信号恢复与滤波**:设计具有特定响应特性的滤波器以增强噪声抑制和信息提取能力。 4. **图像处理**:用于执行旋转、缩放等变换,以及进行特征识别任务。 5. **通信系统**:在多载波通信中改善频率选择性衰落问题。 6. **量子力学研究**:描述粒子的非经典行为如超辐射和亚辐射现象。 对于包含 chirp(变频信号)的傅里叶变换示例,分数阶傅里叶变换能够更好地分析这种随时间变化频率分布的特殊信号。Chirp信号在雷达与声纳系统中极为常见,FRFT的应用可以更准确地描绘其时频特性及频率演变过程。 综上所述,分数阶傅里叶变换作为现代信号处理领域的重要工具之一,在提供连续角度参数的基础上增强了对复杂信号进行精细和灵活分析的能力。
  • 小波和基础.zip
    优质
    《小波和傅里叶分析基础》是一本深入浅出地介绍信号处理中常用数学工具的书籍,特别适合初学者理解和掌握小波变换与傅里叶分析的基本概念和技术。 《小波与傅立叶分析基础》是一本较新的电子书。