本文为一篇关于卡尔曼滤波及鲁棒估计的研究综述,总结了该领域自上世纪90年代以来的发展历程、关键成果和最新进展,并探讨未来研究方向。
### 卡尔曼滤波与鲁棒估计综述
#### 4.1 引言
在许多工程系统、生物系统和社会系统中,存在一些无法直接测量的变量。如何通过可访问变量的测量来估计这些不可测变量成为了一个关键问题。这类问题的研究可以追溯到高斯发明最小二乘法的时代,而概率论、统计学和线性代数等数学工具为各种估计方法提供了坚实的理论基础。
动态系统的状态估计方法与一般概率和统计估计的不同之处在于它针对特定结构的问题进行设计。具体而言,线性动态系统的输出与其输入之间存在一种特殊的依赖关系——卷积。对这类系统状态的估计始于20世纪60年代现代控制理论兴起之时。在这一理论框架下,系统的输入输出不再由微分方程或传递函数描述,而是通过一组耦合的一阶微分方程来表示,这被称为状态空间模型。
本章首先介绍Luenberger观测器及其设计过程,并讨论如何处理状态估计中的测量误差问题。随后引出卡尔曼滤波的概念,并给出基于似然最大化的方法推导。此外还探讨了在存在参数建模误差时的状态估计问题,并开发了一种能够递归地估计系统状态并对抗这些模型误差的算法。
#### 4.2 状态估计与观测器设计
在一个有限维离散时间系统中,假设其输出线性依赖于输入且参数随时间不变,则该系统的输入输出关系可以通过一组一阶差分方程来描述。特别地,令y(k)表示系统的输出,u(k)表示系统的输入,则状态空间模型可以写作:
\[ x(k+1) = Ax(k) + Bu(k) \]
\[ y(k) = Cx(k) + Du(k) + v(k) \]
其中,x(k)是系统的状态向量,A、B、C和D分别是系统矩阵,v(k)代表噪声。
##### Luenberger观测器设计
Luenberger观测器是一种广泛应用于状态估计的技术。对于上述所述的系统模型,Luenberger观测器的基本形式为:
\[ \hat{x}(k+1) = A\hat{x}(k) + Bu(k) + L[y(k) - C\hat{x}(k)] \]
\[ \hat{y}(k) = C\hat{x}(k) \]
其中,$\hat{x}(k)$和$\hat{y}(k)$分别是状态和输出的估计值,L是增益矩阵,它决定了观测器的性能。
设计Luenberger观测器的关键步骤包括:
1. **选择增益矩阵**:为了使观测器稳定并具有良好的收敛特性,通常需要选择适当的L矩阵。一种常用的方法是通过极点配置技术将观测器特征值放置在期望的位置。
2. **稳定性分析**:验证观测器是否稳定,即状态估计误差是否随时间收敛到零。
3. **性能评估**:评估观测器的性能,包括估计精度和鲁棒性等指标。
##### 卡尔曼滤波器
卡尔曼滤波器是一种递归算法,在存在噪声的情况下用于系统状态的估计。它结合了系统的动态模型与测量数据,通过最小化估计误差的均方值来进行状态估计。其基本步骤包含预测阶段和更新阶段:
1. **预测阶段**:根据上一步的状态估计值及系统模型来预测当前时刻的状态。
2. **更新阶段**:利用实际测量数据与预测值之间的差异(残差)修正预测,得到更准确的估计结果。
卡尔曼滤波器的一个显著特点是它能有效处理噪声和不确定性,并且能够在线实时地进行状态估计更新。
##### 鲁棒估计
在实际应用中,系统的参数往往存在一定的不确定性和误差,这可能影响到状态估计的结果。鲁棒估计算法旨在即使面对未知扰动或模型误差也能获得可靠的估计结果。通常通过增加额外的设计约束条件来实现这一点,确保估计结果对参数变化不敏感。例如可以通过优化问题的形式引入惩罚项以减小模型误差的影响。
### 总结
本段落概述了卡尔曼滤波与鲁棒估计的相关理论和技术,并重点介绍了Luenberger观测器设计、卡尔曼滤波的工作原理以及在存在建模误差时的鲁棒状态估计方法。这些技术在工程实践中具有广泛的应用价值,特别是在信号处理和控制系统设计等领域中。随着现代计算能力增强及传感器技术的发展,预计卡尔曼滤波与鲁棒估计算法将继续发挥重要作用,并成为解决复杂系统状态估计问题的重要工具之一。