Advertisement

C51智能灌溉系统提供温湿度监测与显示功能,并具备自动补水机制,同时附带各类软件安装指南。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该资源包内包含了C51自动浇花系统完整的源代码,涵盖了Keil编译器的代码,同时还提供了详细的电路原理图、实物接线图以及PCB设计图。此外,为了便于理解和验证,我们还提供了Proteus仿真文件。更重要的是,该资源包内附带了开发软件安装指南,包括AD、Proteus和Keil等常用软件的安装教程,旨在为用户提供一站式的开发支持。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • C51浇花(含湿
    优质
    C51自动浇花系统是一款集成了温湿度监测和显示功能的智能设备,能够自动抽取水源进行植物灌溉。本产品附带详尽的软件安装指南,帮助用户轻松设置并享受自动化园艺的乐趣。 这段文字描述了一个C51自动浇花系统的相关资源集合:包括Keil源代码、原理图、实物接线图、PCB设计以及Proteus仿真文件,并且包含了开发软件的安装教程(如AD,Proteus,Keil等)。
  • 基于FPGA的
    优质
    本项目研发了一套基于FPGA技术的温室智能灌溉系统,实现对温室内环境参数的实时监控与自动调节。通过精准控制灌溉水量和频率,达到节水增效的目的,并确保作物生长的最佳条件。 ### 基于FPGA的温室灌溉智能测控系统 #### 概述 本段落介绍了一种基于现场可编程门阵列(Field Programmable Gate Array,简称FPGA)的温室灌溉智能测控系统的设计与实现。该系统以Xilinx Spartan-3ADSP FPGA为核心,能够实时监测和控制温室灌溉过程中营养液的电导率和酸碱度,从而实现精准灌溉。通过采用模糊逻辑控制技术,系统能够有效地应对灌溉过程中的不确定性因素,提高灌溉效率和作物产量。 #### 关键技术与设计要点 **1. FPGA在测控系统中的应用** 现场可编程门阵列(FPGA)是一种高度灵活的数字逻辑器件,能够通过编程实现复杂的逻辑功能。相比传统的ASIC(Application Specific Integrated Circuit,专用集成电路),FPGA具有更高的灵活性和更快的开发周期。在温室灌溉智能测控系统中,FPGA被用来实现信号采集、数据处理和控制逻辑等功能。 **2. 系统架构** 该测控系统由以下四个主要部分组成: - **FPGA处理模块**:负责数据处理和控制逻辑的实现。 - **输入输出模块**:包括传感器输入和执行器输出,用于监测环境参数并控制灌溉设备。 - **人机交互模块**:提供用户界面,支持手动控制和参数设置。 - **基本功能模块**:包括电源管理、通信接口等辅助功能。 **3. 营养液参数监测与控制** - **电导率监测**:电导率是反映营养液中溶解物质浓度的重要指标。通过监测电导率的变化,可以及时调整营养液配方,确保作物获得足够的养分。 - **酸碱度(pH值)监测**:pH值对植物生长至关重要,不同作物对土壤或营养液的pH值有不同的要求。通过实时监测并调节pH值,可以优化灌溉条件。 **4. 模糊逻辑控制** 模糊逻辑控制技术适用于处理非精确的输入信息,非常适合于温室灌溉这类动态变化较大的环境控制问题。该系统通过模糊逻辑控制器对营养液电导率和pH值进行实时调节,确保营养液的成分稳定在最佳范围内。 #### 设计流程 1. **需求分析**:明确系统的功能需求和技术指标,包括灌溉频率、营养液成分监测精度等。 2. **硬件选型**:选择合适的FPGA芯片、传感器及其它硬件组件。 3. **系统设计**:根据需求分析结果设计系统架构,并确定各模块的功能。 4. **软件开发**:使用HDL(Hardware Description Language)编写程序,实现信号采集、数据处理和模糊逻辑控制等功能。 5. **仿真测试**:利用Xilinx ISE开发工具和MATLAB Simulink进行系统级仿真,验证设计的正确性和可靠性。 6. **系统集成与调试**:将各模块集成到一起,在实际环境中进行测试和调试,确保系统的稳定运行。 #### 结论 基于FPGA的温室灌溉智能测控系统具有高集成度、高灵活性和强大的实时处理能力。通过采用模糊逻辑控制技术,该系统能够在复杂的灌溉环境中实现精准控制,不仅提高了灌溉效率,也促进了作物的健康生长。此外,该系统还具备良好的扩展性和可维护性,为后续的研发提供了便利。
  • 大棚基地湿
    优质
    本系统专为大棚种植设计,集成温湿度监测及自动灌溉功能,旨在实现精准农业管理,提升作物生长环境控制水平和资源利用效率。 设计一个大棚基地温湿度控制系统:当DHT11温湿度传感器检测到空气中温度超过预设的温度范围值时,直流电机会加速旋转以降低大棚内温度;若空气中的温度低于设定范围,则直流电机停止转动。如果DHT11温湿度传感器检测到空气中的湿度超出预设的湿度范围,系统将启动报警机制,此时蜂鸣器会发出声音提醒用户。
  • 太阳
    优质
    智能太阳能节水灌溉控制系统是一款利用太阳能驱动,结合先进传感器和智能算法,实现精准、高效农田灌溉管理的绿色解决方案。 太阳能智能节水灌溉控制系统主要利用太阳能作为能源,并通过人工设定的上下限来控制灌溉过程。该系统能够自动检测土壤湿度并据此进行适时灌溉与关水操作,同时具备温度报警功能。其设计目标是借助环保新能源及水资源节约技术实现智能化、无人工干预的灌溉模式,从而缓解一次能源短缺的问题。 本段落研究的核心内容为基于单片机STC89C52的太阳能智能节水灌溉控制系统。整个系统以单片机为核心部件,通过采集和储存太阳能来提供电力供应,并使用运放比较器LM324界定土壤湿度的干湿上下限。该系统由多个模块组成:包括太阳能供电模块、温度检测模块、湿度感应模块、电池阀驱动控制以及显示信息界面。 此外,本段落还探讨了系统的应用领域,如温室大棚种植区、农田作业区域、城市园林绿化带及屋顶花园等需要进行植物养护的场所,并指出该技术具有广泛的应用前景。
  • 基于STM32的室大棚
    优质
    本项目研发了一套基于STM32微控制器的温室大棚智能灌溉和环境监测系统。该系统能够自动检测土壤湿度、光照强度等参数,并根据预设条件精准控制灌溉设备,实现节水增效,提高作物生长质量。 温室大棚智能浇灌及检测系统能够实时监测棚内温湿度、二氧化碳浓度以及土壤湿度,并通过显示屏显示数据。该系统还配备了排风扇和日光灯等硬件设备,用于控制环境条件。用户可以选择手动定时或自动模式来实现智能化灌溉操作。此外,系统集成了ESP8266无线WIFI模块,使用户能够利用手机或电脑远程监控大棚并进行浇灌管理。
  • 的开发实施
    优质
    本项目致力于研发一套先进的智能自动灌溉系统,通过精准监测土壤湿度和天气预报数据,实现农作物高效节水灌溉。 水是生命的基石,植物的生命活动依赖于持续不断的吸水、传导与运输、利用以及散失的过程。然而,在我国水资源却相当匮乏,使得中国成为世界上13个淡水资源最贫乏的国家之一。人均占有淡水资源仅为世界平均水平的四分之一。这种资源短缺给农业发展带来了重大挑战和困难。 农作物生长需要土壤保持一定湿度,农民通常根据经验进行灌溉,无法及时或精确地控制浇水量,这常常导致过度灌溉,并浪费大量宝贵的水资源。如何利用有限的水源实现“节水农业”,以获得最佳经济效益并促进持续稳定的发展成为农业生产的关键问题。因此,使用智能灌溉系统来有效减少田间灌水过程中的渗漏和蒸发损失显得尤为重要。 现有的灌溉设施通常需要外部电源供电,这不仅存在安全隐患而且操作不便。本项目开发了一种创新的智能灌溉解决方案,在没有电力供应的情况下也可运行,并具有显著的优势:节水、节能以及节省劳动力成本。
  • 基于51单片(含湿感应、定及LCD1602泵控)及相关资料(Proteus仿真、原理图、流程图、物料清单、源代码)
    优质
    本项目设计了一款基于51单片机的智能灌溉系统,集成了温湿度感应、定时功能、水量监测及LCD1602显示和水泵控制模块。提供详尽资料包,包括Proteus仿真文件、原理图、流程图、物料清单与源代码。 基于51单片机的智慧农业智能灌溉报警系统设计包括温湿度监测、定时控制、水量调节以及LCD1602显示等功能模块。本项目涵盖原理图绘制、PCB布局及仿真,同时提供完整的源代码。 该系统主要分为两种运行模式:湿度控制和定时设置。 - 在湿度控制模式下,当检测到的环境湿度低于设定的下限值时启动水泵进行灌溉;高于上限值则停止工作。 - 定时模式中,根据用户预设的时间间隔自动开启或关闭水泵。同时允许调节每次工作的水量大小。 此外,系统还支持设置温湿度阈值以及加水数量等参数配置功能。
  • 花盆电路方案——为植物浇
    优质
    本项目设计了一款智能花盆电路,集成土壤湿度传感器与无线通讯模块,可实现远程监测和自动浇灌功能,确保植物生长环境适宜。 对于此项目,我们必须包含一组特定的组件:BME280传感器、Seeed Grove灰尘传感器、Seeed Grove空气质量v1.3传感器、电容性土壤湿度传感器、Adafruit 128x64 OLED显示屏、继电器和一个Particle Argon模块。我想要设计出一种简洁且美观的整体布局,最初打算将盒子与花盆放置在一个水箱上,但最终决定把所有组件放在丙烯酸圆盘上展示。 对于盒子的设计,在Autodesk Fusion 360中建模,并使用Formlabs 3 Resin打印机打印出来。同样的方法也用于设计和打印花盆。我选择了合适的剩余丙烯酸光盘作为水箱的主体,以确保整个项目的一致性。 该项目的主要目标是创建一个可以通过网络控制进行自动浇水的精致花盆装置。大约8小时的工作时间完成了所有设计与组装工作,但实际打印组件花费了更多的时间:锅用了约23个小时来完成,盒子在树脂打印机上用时3小时,而水箱干燥则耗时约2小时。 BME280传感器和土壤湿度传感器安装于花盆内部。Particle Argon模块通过继电器连接到盒子内,并且显示屏固定在外壳表面;电动机被安置进储水器中,空气质量与灰尘传感器粘贴在盖子上以提高读数准确性。 我设计了一个便于使用的Particle Argon端口、一个易于拆卸但也可以固定的盖子(带有允许所有电线通过的直通孔),继电器安装于面包板上方以及将空气质量和灰尘传感器都固定在外壳盖子上,以便更准确地测量空气质量。最初设想是把盒子和花盆放置在一个直径约6英寸的水箱顶部,但由于材料限制而调整为使用4.5英寸丙烯酸圆盘,并通过双面胶粘贴到一个9英寸的大圆盘上来实现这一目标。 对于供水系统的设计,在锅中钻了两个孔:一个用于土壤湿度传感器的电线,另一个则用来连接软管。我尝试用热熔胶形成防水密封但效果不佳,最终使用浴室硅胶来确保所有接头处不会漏水。
  • 基于51单片湿、定量、LCD1602】(仿真).rar
    优质
    本项目为一个基于51单片机设计的智能灌溉系统,集成了温度和湿度传感器以监测环境条件,并设有定时功能确保按时浇水。此外,该系统还包含了一个测量水量的功能模块以及一个LCD1602显示屏用于参数显示及设置,便于用户实时监控与调节灌溉过程中的各项数据。整个项目采用计算机仿真软件进行设计验证,旨在为农业生产提供一种高效、便捷的自动化解决方案。 自动灌溉系统 1. 系统包括湿度控制模式和定时模式。 2. 在湿度控制模式下,当土壤湿度低于设定的下限时启动水泵,高于上限时停止水泵。 3. 定时模式下,到达预设的时间点后启动水泵,并可根据需要设置浇水的量。 4. 用户可以自行设置湿度上下限以及每次加水的具体水量。 该系统的设计资料包括程序代码、原理图、仿真结果和流程图等文档。此外还列出了所需器件清单。
  • 室花卉:RTES项目
    优质
    本项目专注于研发先进的智能温室花卉灌溉系统(RTES),通过精准控制水分供应,优化花卉生长环境,提升农业生产效率与品质。 关于项目 我们的团队致力于设计一个基于Raspberry Pi的温室智能花卉浇水系统。该系统能够实时检测温室内的环境参数和土壤湿度,并在需要时自动浇灌植物。具体来说,当土壤湿度高于或低于预设阈值时,Raspberry Pi会控制水管进行灌溉;如果温室温度异常,则蜂鸣器将被激活并向用户的电子邮件发送警报信息。 所有收集到的数据都会通过PC端的用户界面显示出来,该界面是使用Qt工具创建的。此外,系统还利用OneNet云服务器来实现数据传输和存储功能。 先决条件 硬件要求: - Raspberry Pi 3b+ - DHT11 温湿度传感器 - 土壤湿度传感器 - 蜂鸣器 软件需求: - Qt Creator (用于构建用户界面) - Geany IDE(用于编写C语言代码) 安装步骤: 从项目分支下载并解压libghttp库文件,然后在树莓派上进行安装: ```bash tar -xzvf libghttp-1.0.9.tar.gz cd libghttp-1.0.9 ./configure make sudo make install ``` 接下来,请按照以下步骤来解压并安装wiringPi.h库文件: ```bash $ tar xvf wiringpi-latest.tar.xz ```