Advertisement

利用QT、OpenCV的模板匹配、特征匹配、形状匹配以及9点标定,并包含畸变校正的完整源代码,仅供学习参考。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过QT与OpenCV相机标定技术,实现获取去畸变矫正的源代码。此外,提供9点标定源码,以及利用OpenCV进行圆拟合的解决方案。同时,包含QT与OpenCV模板匹配的实现代码,并涵盖QT与OpenCV进行匹配、旋转和缩放的功能。 此外,还提供了QT与OpenCV进行形状匹配的代码,以及QT与OpenCV特征匹配的代码。最后,包含QT与OpenCV线点匹配的实现方法。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于QTOpenCV9),
    优质
    本项目运用QT和OpenCV实现模板匹配、特征匹配、形状匹配等功能,并包含9点标定及图像畸变校正,提供完整源代码供学习参考。 QT+OpenCV相机标定获取去畸变矫正源码、9点标定源码、圆拟合源码、模板匹配源码、特征匹配(包括旋转与缩放)的实现以及形状匹配和线点匹配的相关代码,全部基于QT和OpenCV。
  • 基于QTOpenCV,结合9),
    优质
    本项目利用QT和OpenCV实现模板、特征及形状匹配,并包含9点标定和畸变校正功能。提供完整源代码供学习研究使用。 QT+OpenCV相机标定获取去畸变矫正源码 QT+OpenCV 9点标定源码 QT+OpenCV 圆拟合源码 QT+Opencv模板匹配源码 QT+Opencv做匹配、旋转和缩放的代码 QT+Opencv形状匹配源码 QT+Opencv特征匹配源码 QT+Opencv线点匹配源码
  • SURF识别多图像与误_SURF_MATLAB_SURF_图像_MATLAB_
    优质
    本文介绍了基于MATLAB的SURF算法在图像处理中的应用,重点阐述了如何利用SURF进行特征识别、多图像间的特征匹配以及误匹配检测和修正的方法。 SURF特征识别与多图像特征匹配是计算机视觉领域中的核心技术之一,在诸如图像识别、目标检测、图像拼接及3D重建等方面有着广泛的应用。2006年,荷兰埃因霍芬理工大学的Hanspeter Pfister等人提出了快速且鲁棒的图像描述符——SURF(Speeded Up Robust Features),它在SIFT基础上进行了优化,在保持稳定性和不变性的同时提高了计算速度。 1. **特征提取** SURF特征提取过程包括尺度空间中的极值检测和生成特征描述符。通过高斯-拉普拉斯金字塔确定图像的尺度空间,以寻找关键点,并通常选择这些关键点作为局部极大或极小值点。随后,对于每个关键点计算一个方向响应函数来定义其方向。接着利用64维Hessian矩阵来描绘关键点周围的结构特征。 2. **特征匹配** 特征匹配涉及在不同图像之间确定对应的特征点。通常使用余弦相似度或汉明距离等方法衡量两个描述符之间的接近程度。MATLAB中的`matchFeatures`函数可用于执行这一操作,并返回相应的匹配对索引值。 3. **误匹配矫正** 由于光照变化、遮挡和类似背景等因素的影响,特征匹配过程中可能会出现错误的对应关系(即误匹配)。为了提高准确性,可以采用RANSAC算法来排除异常数据点。该方法通过随机选择子集并构建几何模型的方式反复进行,并根据内标量的数量找出最优解以剔除这些不正确的匹配。 4. **MATLAB实现** MATLAB图像处理工具箱提供了SURF特征提取和匹配所需的功能,例如`detectSURFFeatures`用于检测关键点、`extractFeatures`用来获取描述符以及使用如`matchFeatures`, `estimateGeometricTransform`, 和 `fitGeometricModel`等函数进行几何校正及模型拟合。 5. **应用实例** 实践中,在图像拼接任务中,通过匹配和纠正误配的SURF特征可以将多张图片无缝地组合成一张全景图。而在目标识别方面,则可以通过比较不同视角下的图像特征来实现同一物体的有效识别。 6. **优化与扩展** 对于大规模数据集的应用场景,可考虑采用更高效的描述符库(如BRISK、ORB)或转向深度学习方法(例如CNN),后者能够自动提取更高层次的特征表示,并进一步提高匹配性能。 综上所述,SURF特征识别和多图像间的特征匹配是计算机视觉技术的关键组成部分,在MATLAB这样的强大科学计算环境中具有完整的工具链支持来进行相关操作与研究。通过深入理解并实践这些算法和技术,我们可以更加有效地应对各种复杂的图像分析挑战。
  • 影像
    优质
    简介:本研究探讨了特征点匹配与影像匹配技术,旨在提高图像处理和计算机视觉领域的精确度与效率,涵盖算法设计、性能优化等关键环节。 数字摄影测量技术利用基于相关系数的影像匹配方法,并结合特征提取代码进行处理。这些工具和技术共同构成了一个完整的解决方案包。
  • HDevelop中实现
    优质
    本文探讨了在HDevelop软件中实现形状匹配和模板匹配的方法和技术,分析比较两者在图像处理中的应用效果。 用HDevelop13.01实现标记电路板图片中指定焊盘的功能。
  • 示例:OpenCV Python实现多次
    优质
    本项目通过Python结合OpenCV库展示了如何执行多模板匹配技术。它包含详尽的代码示例,用于演示在单个图像上查找多个对象位置的过程。 在OpenCV库中,模板匹配是一种图像处理技术,用于在大图像中寻找与特定模板(小图像)相似的区域。这种技术广泛应用于图像识别、物体定位等领域。利用Python编程环境中的OpenCV提供的API可以轻松实现这一功能。 下面我们将详细探讨如何使用OpenCV Python进行多个模板匹配,并基于multiple-template-matching项目进行解析: 首先,我们需要导入必要的库文件:包括OpenCV(cv2)、Numpy(用于数组操作)和Matplotlib(用于图像显示): ```python import cv2 import numpy as np import matplotlib.pyplot as plt ``` 在多模板匹配中,我们可能有一系列不同的小图片作为模板,并需要找到它们分别出现在目标大图中的位置。以下是基本步骤: 1. **加载图像和模板**:我们需要先读取主图像以及所有的小模板图像: ```python target_image = cv2.imread(target.jpg) templates = [template1.jpg, template2.jpg, template3.jpg] template_images = [cv2.imread(template, 0) for template in templates] # 加载为灰度图,方便后续处理。 ``` 2. **模板匹配**:使用`cv2.matchTemplate()`函数对每个小图像(即每一个可能的物体)进行搜索。这个函数返回一个与模板大小相同的二维数组,其中每个元素表示在主大图片中对应位置处该对象被找到的概率: ```python matching_methods = [cv2.TM_CCOEFF_NORMED, cv2.TM_SQDIFF_NORMED] matches = {method: [] for method in matching_methods} for template in template_images: for method in matching_methods: result = cv2.matchTemplate(target_image, template, method) matches[method].append(result) # 存储每个方法的结果 ``` 3. **确定匹配区域**:为了找到最佳的匹配位置,我们可以设置一个阈值,并使用`cv2.minMaxLoc()`函数来定位最大(或最小)概率的位置。这些坐标就是模板在目标图像中的大致位置: ```python threshold = 0.8 # 设置阈值以过滤低质量的结果 for method, results in matches.items(): for result in results: min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) if method == cv2.TM_SQDIFF_NORMED: # 根据不同的匹配方法选择最大或最小值作为最佳位置 if max_val < threshold: match_location = max_loc else: if min_val > threshold: match_location = min_loc ``` 4. **显示结果**:最后,我们可以用矩形框标出每个找到的模板的位置,并将结果显示出来: ```python for method, locations in matches.items(): for i, location in enumerate(locations): template_name = f{method} ({templates[i]}) match_color = (0, 255, 0) if method == cv2.TM_SQDIFF_NORMED else (0, 0, 255) match_thickness = 2 if method == cv2.TM_SQDIFF_NORMED else 4 rect = cv2.rectangle(target_image.copy(), tuple(location[::-1]), (location[0] + template_images[i].shape[1], location[1] + template_images[i].shape[0]), match_color, match_thickness) plt.imshow(cv2.cvtColor(rect, cv2.COLOR_BGR2RGB)) plt.show() ``` 以上就是使用OpenCV Python进行多模板匹配的基本步骤。这个过程可以适应各种场景,通过调整阈值、选择不同的匹配方法等参数来优化结果以满足不同复杂度的图像识别任务需求。 在实际应用中可能还需要考虑性能优化等问题,这通常涉及更高级的技术如滑动窗口技术或并行计算等。multiple-template-matching项目可能会包含这些高级应用场景的例子,可以深入研究这个项目的源代码获取更多信息。
  • 优质
    《形状匹配》是一款结合数学与艺术思维的游戏应用。玩家通过旋转、调整各种几何图形来拼合特定图案,旨在锻炼空间想象能力和逻辑思维技巧。适合所有年龄段的人士挑战自我和享受创造的乐趣。 基于边缘的模板匹配算法实现涉及利用图像中的边缘特征来进行模板或模式匹配。这种方法通过识别和比较目标对象的关键边界轮廓来提高匹配的准确性和效率。
  • 多目算法
    优质
    简介:本文提出了一种基于模板匹配的多目标识别与跟踪算法,有效提升了复杂场景下多个相似目标的同时检测和追踪能力。 对目标数字进行模板匹配,已打包数字模板和目标样本。该小程序非常实用,并且可以在现有基础上添加算法,在实测环境中使用C++和OpenCV2.4.9运行无误。
  • OpenCV进行
    优质
    本教程介绍如何使用OpenCV库实现图像中的对象识别与定位,通过模板匹配技术,帮助开发者掌握在复杂场景中寻找特定目标的方法。 这段文字描述了一段基于OpenCV的模板匹配代码,其中包含了大量的注释内容,非常适合初学者学习使用。