Advertisement

该研究探讨了融合视觉和雷达信息,用于智能车辆自主换道决策及控制的机制。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该研究深入探讨了基于视觉感知和雷达技术的智能车辆实现自主换道决策以及相应的控制策略。具体而言,旨在构建一个能够独立、安全地执行换道操作的车辆系统,其核心在于融合了视觉信息和雷达数据,从而为车辆提供全面的环境感知能力。通过对这一机制进行系统性的研究,有望显著提升车辆在复杂交通环境下的驾驶效率和安全性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 辅助
    优质
    本研究探讨了利用视觉及雷达技术提升智能车辆在复杂交通环境中的自主变道能力,旨在确保行车安全并提高道路使用效率。 基于视觉和雷达的智能车辆自主换道决策机制与控制研究
  • 毫米波检测.pdf
    优质
    本文探讨了结合毫米波雷达和视觉技术在复杂交通环境中进行精确车辆检测的方法,通过数据融合提高识别精度和可靠性。 本段落介绍了一种结合毫米波雷达与机器视觉的信息融合技术用于车辆检测的方法。通过将雷达的探测数据映射到图像上形成感兴趣区域,并利用机器视觉手段对前方目标进行验证,解决了单一传感器在车辆识别中的不稳定性问题。实验结果证明了这种信息融合策略能够显著提升车辆检测的准确性。关键词包括:车辆检测、信息融合、假设验证、毫米波雷达和机器视觉。
  • 模型
    优质
    本研究致力于探索智能车辆在行驶过程中自主进行车道变换的技术挑战与解决方案,构建了高效准确的自由换道模型,以提高道路使用效率和交通安全。 针对传统车辆换道模型在换道过程中存在的侧向加速度过大或跃变、轨迹曲率不连续以及起始时刻侧向加速度非零等问题,本段落以四段式车道变换理论为基础,提出了一种新的自由换道轨迹函数,并引入B样条理论对换道路径进行再规划。由此建立的新型高速公路车辆自由换道模型能够有效解决传统模型中存在的上述缺陷。 通过设定车辆换道性能评价参数,在Matlab环境下进行了仿真计算并生成了新模型下的换道轨迹,同时与另外两种不同的换道模型产生的轨迹进行了对比分析。结果表明,该提出的新型车道变换模型具有较高的正确性和有效性。
  • 路径识别仿真
    优质
    本研究聚焦于开发一种基于路径识别技术的先进车辆控制系统,通过智能算法优化驾驶行为,并进行了详实的计算机仿真分析。 本段落以竞赛用汽车模型为硬件平台,研究了基于路径识别的车辆智能控制策略与算法,并在计算机上进行了行驶模拟。通过自行设计车辆的硬件、控制策略及算法,最终实现了该模型车能够在规定路线上自主识别并进行行驶的功能。
  • 轨迹跟踪
    优质
    本研究聚焦于智能车辆的轨迹跟踪控制技术,探索并优化算法以实现精准、稳定的自动驾驶路径跟随,提升道路安全与驾驶体验。 为了适应系统模型的需求,我们建立了车辆三自由度动力学模型,该模型涵盖了横向、纵向及横摆三个方向的运动,并结合基于魔术公式的轮胎模型,在小角度转向的基础上对车辆模型进行了进一步简化,降低了复杂性,为后续轨迹跟踪控制的研究奠定了基础。接下来研究了非线性模型预测控制方法,并将其转化为易于求解的线性化形式。我们详细探讨了这一转化过程中的各种变换,并建立了相关的预测模型和目标函数。 此外,还深入研究了线性化误差、车辆动力学约束条件以及二次规划问题,基于这些理论结合车辆仿真模型设计出了模型预测轨迹跟踪控制器。在此过程中,特别关注了预测时域对系统性能的影响,通过速度与附着系数输入制定了一系列模糊控制规则,并确定了最优的预测时域参数。最终利用模糊控制原理开发了一种变时域自适应轨迹跟踪控制器。 为了验证所提出控制器的有效性,在多种工况下使用MATLAB/Simulink和Carsim软件搭建了一个联合仿真平台进行了测试。此外,还考虑到了参考路径上可能存在的障碍物情况,并在此基础上研究了避障轨迹跟踪控制策略。我们设计了一种双层系统:上层为基于模型预测算法的局部路径规划模块;下层则是负责执行具体跟随动作的轨迹跟踪控制系统。 通过以上工作,我们的目标是提高车辆在复杂环境中的自主导航能力,特别是在存在动态障碍物的情况下能实现安全、高效的行驶路线选择与实时调整。
  • 毫米波前方检测技术
    优质
    本研究聚焦于开发结合机器视觉与毫米波雷达技术的算法,以提高前方车辆检测精度及可靠性,助力自动驾驶安全驾驶系统。 本研究聚焦于车辆自动驾驶系统中的道路环境感知技术,并开发了一套前方车辆检测系统。该系统通过安装在车上的相机和毫米波雷达实时采集前方的道路信息。利用传感器数据的接收、处理及融合算法,实现对前方车辆的及时、准确且可靠的检测,同时具备良好的环境适应性。
  • 技术前方障碍物检测
    优质
    本研究探讨了结合雷达和机器视觉技术进行车辆前方障碍物识别的方法,旨在提高自动驾驶汽车的安全性和可靠性。通过这两种传感器数据的有效融合,能够更准确地判断道路环境中的潜在威胁,并及时作出反应。该方法有望广泛应用于智能交通系统中。 基于雷达和机器视觉融合的前方车辆障碍物检测方法介绍了一些有效的技术手段来提高道路安全性和驾驶体验。这种方法结合了两种传感器的数据,以更准确地识别行驶路径上的潜在威胁。通过这种融合技术,可以克服单一传感器在某些情况下的局限性,提供更加全面可靠的环境感知能力。
  • 寻迹PID.pdf
    优质
    本文探讨了在智能车辆中应用PID控制算法实现路径追踪的方法与效果,分析其参数优化对行驶精度和稳定性的提升作用。 随着科学技术的进步以及人民生活水平的提升,汽车智能化与无人驾驶技术已经成为汽车行业的发展趋势。智能汽车的技术水平越高,人们对这类车辆的安全性要求也就越严格。研发更安全、快速且稳定的控制算法是当前智能车开发中的首要任务。 本研究课题以MC9S12XS128芯片为基础设计了一款自动寻迹的智能小车,并主要针对增量式PID控制器在面对复杂多变环境时抗干扰能力不足以及对动态系统响应速度不够快等问题进行了改进。具体的研究内容包括: (1)构建了一个基于MC9S12XS128单片机为核心组件的寻迹控制系统,该系统涵盖了图像采集、电机驱动、电源管理、舵机控制及无线通信等五个关键模块。 (2)对PID算法进行优化设计,在原有的增量式 PID 控制基础上引入了不完全微分和“最优曲率”技术,并结合微分先行策略形成了改进的PID方案。此外,还依据实际操作经验制定了模糊控制器表格并提出了自适应PID模糊控制方法;同时利用BP神经网络构建了一个三层结构的智能控制系统。 (3)对智能车所使用的直流电机进行了数学建模工作,然后分别采用增量式 PID、优化后的PID算法以及基于模糊逻辑和BP神经网络的方法来对其进行动态调节,并完成了相应的软件设计任务。 (4)借助MATLAB/Simulink工具箱模拟了上述四种控制策略的效果并进行对比分析。最终通过LabVIEW平台开发的上位机程序与蓝牙无线模块实现数据交换功能,在实际环境中对这几种算法进行了在线调试实验,结果显示自适应模糊PID控制器具有最小稳态误差和最高的精度,并且在抗干扰性和环境适应性方面表现出色。
  • PMSM弱磁.pptx
    优质
    本演示文稿深入研究和讨论了永磁同步电机(PMSM)在不同工况下的弱磁控制策略,旨在优化其高速运行性能。通过理论分析和实验验证相结合的方法,探索提高效率和动态响应的创新技术方案。 本段落重点介绍了PMSM弱磁控制的原理、意义以及常用策略。在控制策略部分,详细阐述了目前常用的多种弱磁控制方法,包括公式计算法、查表法、负id电流补偿、梯度下降法及单电流调节器原理,并对其优缺点进行了比较分析。
  • 动驾驶汽轨迹规划跟踪
    优质
    本研究聚焦于开发高效的算法与模型,以优化自动驾驶汽车在复杂交通环境中的车道变换行为,涵盖轨迹规划和精准控制技术。 首先分析了自动驾驶车辆在换道过程中的行为特性及其与周围人工驾驶车辆的交互模式,并基于效用理论建立了分层Logit模型来模拟换道决策过程的主要方面——目标车道选择及目标车道间隙接受情况,提取影响这些决策的关键参数并利用极大似然估计方法进行标定。通过仿真分析了不同换道策略对车辆运行特性的影响。 其次,在确保自动驾驶车辆安全换道的前提下兼顾乘客舒适度,研究根据可能发生的临界碰撞状态推导出初始时刻的最小纵向安全距离,并采用多项式函数曲线规划轨迹,建立了四种不同的换车道模型:自由换道、原车道有前车障碍时的换道、目标车道存在前车阻碍情况下的换道以及面对后方车辆威胁的目标车道路径选择。对于部分模型进行了仿真测试以验证其有效性。 最后推导了自动驾驶汽车在执行换道动作过程中的运动学和横向动力学公式,通过结合预测控制与滑模控制技术设计了一套有效的轨迹跟踪控制系统来确保精确的行驶路线遵循性。 ### 自动驾驶车辆路径选择及轨迹规划研究 #### 一、背景和目标 随着科技的发展,自动驾驶汽车正逐渐成为汽车行业的新方向。在这一背景下,安全高效的车道变换对于实现完全自主导航至关重要。本项目致力于深入探究自动驾驶中换道行为的关键影响因素,并通过构建合理的决策模型与精确的路径规划算法来确保车辆能够在复杂交通环境中顺利执行换道操作。 #### 二、决策过程建模 ##### (一)交互分析和模型设计 在进行车道变换时,必须仔细考虑周围人工驾驶车辆的行为。基于效用理论建立了一个分层Logit框架用于描述自动驾驶车的路径选择及目标路段间隙接受度评估机制,其中包含两个主要方面:确定最佳的目标道路以及判断该道路上是否有足够的空间以安全完成换道动作。 ##### (二)模型参数优化 - **车道选取**:基于车辆当前位置和速度等关键因素计算出各潜在目标路线的价值,并据此做出选择。 - **间隙接受度评估**:通过效用理论来量化不同间距下的价值,从而决定是否可以利用现有的道路空间执行换道。 #### 三、路径规划策略 为了保证自动驾驶车能够安全地完成车道变换任务,在考虑避免碰撞的同时还需注重乘客的舒适体验。为此我们提出了一系列轨迹模型: - **自由模式**:当周围没有障碍物时允许车辆自主选择最优的时间和路线进行变道。 - **前方有障碍情况下的路径调整策略**:这种情况下,需要根据前车的速度与位置信息动态地调节换车道时机。 - **目标道路存在前行阻碍的解决方案**:在此情形下不仅要考虑自身与先行者的距离还要评估其状态以防止碰撞的发生。 - **后方威胁处理机制**:面对来自后面车辆的压力时提前规划好路径确保有足够的空间执行变道动作。 所有模型都采用了多项式函数曲线进行轨迹设计,保证了路线的连续性和平滑性,并通过实验验证它们的有效性。 #### 四、跟踪控制方案 为了使自动驾驶车能够准确跟随预设轨道行驶,在研究中还探讨了如何利用预测控制和滑模技术来开发出一套高效的路径追踪控制器。这包括建立车辆在执行变道操作过程中的运动学方程与横向动力模型,并在此基础上设计相应的控制系统以确保精确的跟踪性能。 通过上述对自动驾驶汽车换车道过程中决策行为、轨迹规划及跟踪控制等方面的研究,本项目不仅为未来智能交通系统的发展提供了重要的理论支持和实用技术方案。