Advertisement

基于Swin-Transformer和Unet的自适应多尺度训练与多类别分割:针对BraTS 3D脑肿瘤图像的2D图片分割项目

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本项目采用Swin-Transformer结合Unet架构,创新性地引入了自适应多尺度训练策略,专为BraTS数据库中的3D脑肿瘤图像进行高效的2D切片级多类别分割。 项目介绍:总大小357MB 此项目基于Swin-Transformer和Unet架构,并结合自适应多尺度训练技术进行脑肿瘤的4类别分割任务。经过10个epochs的训练,全局像素点准确度已达到0.97。如果进一步增加训练轮数(epoch),其性能预计会更加优越。 代码介绍: 【训练】train脚本自动执行模型训练过程,并通过随机缩放数据至设定尺寸的0.5到1.5倍之间实现多尺度训练,以适应不同大小的数据输入。此外,在utils中的compute_gray函数负责将mask灰度值保存在txt文件中并定义网络输出通道数量。 【介绍】学习率采用余弦退火策略调整,并且损失和IOU曲线可以在run_results文件夹内查看。这些数据由matplotlib库绘制,训练日志、最佳模型权重等信息同样被妥善保存下来,在训练日志中可以找到每个类别的iou值、召回率、精确度以及全局像素点准确率。 【推理】将待预测的图像放置于inference目录下,并直接运行predict脚本即可完成推理过程,无需额外设置参数。 具体使用方法请参考README文件。该项目设计简单易用,即使是初学者也能轻松上手操作。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Swin-TransformerUnetBraTS 3D2D
    优质
    本项目采用Swin-Transformer结合Unet架构,创新性地引入了自适应多尺度训练策略,专为BraTS数据库中的3D脑肿瘤图像进行高效的2D切片级多类别分割。 项目介绍:总大小357MB 此项目基于Swin-Transformer和Unet架构,并结合自适应多尺度训练技术进行脑肿瘤的4类别分割任务。经过10个epochs的训练,全局像素点准确度已达到0.97。如果进一步增加训练轮数(epoch),其性能预计会更加优越。 代码介绍: 【训练】train脚本自动执行模型训练过程,并通过随机缩放数据至设定尺寸的0.5到1.5倍之间实现多尺度训练,以适应不同大小的数据输入。此外,在utils中的compute_gray函数负责将mask灰度值保存在txt文件中并定义网络输出通道数量。 【介绍】学习率采用余弦退火策略调整,并且损失和IOU曲线可以在run_results文件夹内查看。这些数据由matplotlib库绘制,训练日志、最佳模型权重等信息同样被妥善保存下来,在训练日志中可以找到每个类别的iou值、召回率、精确度以及全局像素点准确率。 【推理】将待预测的图像放置于inference目录下,并直接运行predict脚本即可完成推理过程,无需额外设置参数。 具体使用方法请参考README文件。该项目设计简单易用,即使是初学者也能轻松上手操作。
  • :采用UNet
    优质
    本项目旨在通过创新地应用多尺度和自适应UNet模型,实现高精度、高性能的图像多类别分割,适用于医疗影像分析等多种场景。 图像分割是计算机视觉领域的一个核心任务,它涉及将一幅图像划分为多个有意义的区域或对象,以便于后续分析和理解。“基于多尺度、自适应的Unet多类别分割项目”展示了利用深度学习技术进行复杂图像分割的应用实例。 Unet是一种经典的卷积神经网络(CNN)架构,在医学图像分割领域取得了显著成果。其设计特点在于对称编码器-解码器结构,其中编码器捕捉上下文信息,而解码器恢复精细的像素级预测。通过跳连接将高分辨率特征图与低分辨率特征图结合,Unet能够有效处理细节。 在多尺度处理方面,项目可能采用多尺度输入或金字塔池化层来适应不同大小和形状的目标物体。自适应方法则指根据图像内容动态调整网络参数,以提高分割性能。 多类别分割指的是同时识别并分离出多个类别的对象。这需要模型生成每个类别的概率图,并在训练过程中使用适当的损失函数进行优化。 项目中的“muti_segmentation”文件夹可能包含数据集、代码实现、预训练模型和评估指标等相关内容。这些资源包括带有标签的图像,用于网络权重调整的数据,以及量化分割效果的标准如IoU(交并比)、精度和召回率等。结果可视化帮助直观理解模型性能。 该研究旨在通过优化Unet架构解决复杂的多类别图像分割问题,并在各种场景中获得准确的结果。这有助于深入理解深度学习技术的应用及其改进方法。
  • Swin-TransformerUnet:采用进行腹部五器官
    优质
    本项目结合了Swin-Transformer与U-Net架构,通过创新性的自适应多尺度训练策略,实现了对腹部五种关键器官的精准自动分割。 项目介绍:数据集大小为234MB。 本项目使用的是腹部多脏器5类别分割数据集。 网络在训练了300个epochs后,全局像素点的准确度达到0.989,miou值为0.814。如果进一步增加训练epoch数,性能预计会更优。 代码介绍: 【训练】train 脚本自动执行模型训练任务,并将数据随机缩放至设定尺寸的0.5到1.5倍之间以实现多尺度训练。在utils中的compute_gray函数中保存了mask灰度值于txt文本段落件,同时自动生成网络输出层所需的通道数。 【介绍】学习率采用cosine衰减策略,在run_results目录下可以查看训练集和测试集的损失及IOU曲线图,这些图像由matplotlib库生成。此外还保存有训练日志、最佳权重等信息,其中包含每个类别的IOU值、召回率、精确度以及全局像素点准确率。 【推理】将需要进行预测的图片放置于inference文件夹下,并运行predict脚本即可完成预测过程。 具体使用方法可参考README文档。此项目设计简单易用,适合初学者操作。
  • Unet学习在BraTS数据集上2D实践(四
    优质
    本文详细介绍了一种基于Unet架构的深度学习方法,在BraTS数据集中进行二维脑肿瘤图像的精确分割,实现对肿瘤四种类别的有效区分和识别。 本项目是一个基于Unet的多尺度分割实战项目,包含了数据集、代码以及训练好的权重文件,并且经过测试可以直接使用。 **项目介绍:** 总大小为271MB。 该项目的数据集是BraTS 3D脑肿瘤图像切分而成的2D图片分割任务。在仅进行10个epoch的训练后,全局像素点准确度达到了0.97,miou(平均交并比)为0.53。进一步增加训练轮数可以提升性能。 **代码介绍:** - **【训练】** train脚本会自动执行,并且会在设定尺寸的0.5到1.5倍之间随机缩放数据以实现多尺度训练。此外,utils中的compute_gray函数将mask灰度值保存在txt文件中,并为UNET网络定义输出通道。 - **【介绍】** 学习率采用余弦衰减策略,在run_results文件夹内可以查看训练集和测试集的损失及iou曲线(由matplotlib库绘制)。此外,还保存了训练日志、最佳权重等信息。在训练日志中可以看到每个类别的miou、召回率、精确度以及全局像素点准确率。 - **【推理】** 将待预测图像放置于inference文件夹下,并直接运行predict脚本即可进行推理操作,无需设定额外参数。 具体使用方法请参考README文档。即使是初学者也可以轻松上手此项目。
  • UnetResnet学习实战:DRIVE视神经
    优质
    本项目运用了深度学习技术中的Unet和ResNet模型,专注于DRIVE数据集上的视网膜影像处理。通过实施多尺度训练策略及实现多类别的精确分割,致力于提升视盘和血管区域的自动识别精度。该研究不仅为糖尿病性视网膜病变等眼科疾病的早期诊断提供了有力工具,还对医学图像分析领域具有重要参考价值。 本项目为 Unet+Resnet 多尺度分割实战项目(包含数据集),其中unet的backbone更换为了resnet结构。所使用的数据集是DRIVE视神经2类别分割数据集。 **项目介绍:** 总大小350MB。 1. **训练脚本自动执行,代码会将数据随机缩放为设定尺寸的0.5-1.5倍之间进行多尺度训练,并在utils中通过compute_gray函数保存mask灰度值到txt文本。同时,根据分割任务需求定义UNET网络输出通道数。 2. 项目中的预处理函数全部重新实现,在transforms.py文件内可以查看具体代码细节。 3. 网络经过50个epochs的训练后,miou达到了约0.8的成绩。学习率采用cosine衰减策略调整。在run_results文件夹中可以看到训练集和测试集上的损失值及iou曲线图(由matplotlib库生成)。此外还保存了详细的训练日志、最佳权重等信息,在这些日志文档里可以找到每个类别的miou、recall、precision以及全局像素点的准确率等等。 4. 预测脚本能够自动处理inference文件夹下的所有图片进行推理预测工作。 代码中添加了详细注释,便于用户理解与操作。如需使用自己的数据集训练模型,请参考README文档中的指导说明,按照指示步骤即可轻松运行项目。
  • MATLAB代码—高级3D示例...
    优质
    本项目提供基于MATLAB的高级3D脑肿瘤图像分割代码,采用先进的图像处理技术,实现对复杂脑部结构中肿瘤区域的精准识别与分离。 此存储库使用基于产品示例的代码“使用深度学习进行3-D脑肿瘤分割”。该示例采用BRaTS数据集,这是一个包含四个通道或模态的大脑体积表示的数据集。这里的高级示例如何实现是与弗莱堡大学研究团队合作的结果,并且这些例子是根据具有七种模式头颈数据集的论文开发出来的。 这项工作之后是在NVIDIA GTC会议上的演讲,题目为“使用MATLAB从桌面到云端扩展您的深度学习研究:为头颈部肿瘤分割实施多个AI实验”,重点展示了如何利用该工具进行一些高级功能。本存储库将包含我提供的代码和一个博客以更详细地介绍相关工作。 在ParameterSweepingWithExpMgr中,我们修改了大脑分段的代码来展示如何使用ExperimentManagerApp来进行一次留一法分析以及贝叶斯优化(用于确定超参数)。
  • TransUnetSwin-Unet医学语义比研究:腹部器官
    优质
    本研究探讨了TransUnet和Swin-Unet在腹部器官多类别分割任务中的性能差异,旨在为医学影像分析提供有效算法选择。 数据集用于腹部器官多类别图像的语义分割任务,Dice系数约为0.8,IoU为0.7,存储在data目录下的训练集和验证集中。 代码支持一键运行,并提供两种网络模型供选择:TransUnet 和 Swin-Unet。学习率采用cos余弦退火算法调整,可以通过修改base-size参数来适应大尺度数据的训练需求。优化器使用了AdamW。 评估指标包括Dice系数、IoU、召回率(recall)、精确度(precision)、F1分数以及像素准确率等,代码会在每个epoch结束后对训练集和验证集进行自动评估,并将结果保存在runs目录下的json文件中。 推理阶段采用可视化界面操作:运行infer脚本后会启动本地网页服务,用户可以通过上传图片来查看模型的分割效果。
  • UnetResnet101学习实战:DRIVE视神经技术
    优质
    本项目利用改进的Unet结合ResNet101模型,在DRIVE数据集上进行视网膜图像中的视神经精确分割,采用多尺度训练策略以提升不同分辨率下的分割精度和鲁棒性。 本项目为 Unet+Resnet101 多尺度分割实战项目(包含数据集),其中Unet的backbone更换为resnet101,并使用DRIVE视神经2类别分割数据集进行训练。项目的总大小约为203MB。 该项目具备以下特点: - **自动多尺度训练**:train脚本会将输入的数据随机缩放至设定尺寸的0.5到1.5倍之间,实现多尺度训练。 - **mask灰度值保存及网络输出定义**:在utils中的compute_gray函数中,可以找到用于计算并保存mask灰度值的方法,并且该方法还会自动为UNET网络定义输出通道的数量。 - **自定义预处理功能**:所有的数据预处理代码均经过重新实现,在transforms.py文件中可以查看具体的细节和逻辑。 项目训练了50个epochs后,miou达到了大约0.79。学习率采用余弦退火策略调整,并且在run_results目录内保存了训练集与测试集的损失及iou曲线图(由matplotlib库绘制),同时还记录下了详细的训练日志文件以及最佳模型权重。 此外,预测脚本能够自动推理inference子目录下所有图片的内容。整个代码都添加有注释说明,便于用户理解和调试;如有需求想用自己的数据进行训练,请参考README文件中的指导信息以实现简易的操作流程。
  • :利用MATLAB在MRI中识
    优质
    本项目运用MATLAB软件,在磁共振成像(MRI)数据上开发算法,实现对脑部肿瘤的有效分割与精准定位。 图像分割可以通过多种方法实现,包括阈值、区域生长、流域以及等高线技术。这些传统的方法存在一些局限性,但新提出的技术可以有效克服这些问题。 在处理肿瘤相关的信息提取过程中,首先需要进行预处理步骤:移除头骨以外的无用部分,并应用各向异性扩散滤波器来减少MRI图像中的噪声。接下来使用快速边界盒(FBB)算法,在MRI图像上标记出肿瘤区域并框选出来。然后选取这些被标注为边界的点作为样本,用于训练一类支持向量机(SVM)分类器。 最终通过SVM对边界进行精确的分类处理,从而实现有效提取和识别肿瘤的目的。
  • Swin-Transformer语义
    优质
    本研究提出了一种基于Swin-Transformer模型的创新方法,专门针对图像和语义分割任务,结合了卷积神经网络与变换器架构的优势,显著提升了复杂场景下的目标识别精度。 可以使用自己的数据集进行训练。如果选择使用自定义的数据集,则需要先将标签转换为VOC格式,相关代码位于tools文件夹下的voc.py中。具体流程是通过train脚本训练网络模型,并利用prediction脚本来输出分割结果。图片应放置在data文件夹下,但请注意更换数据集时需确保图像均为灰度图。 初始任务主要针对医学图像的分割问题进行设计,但也适用于其他类型的图像处理工作。该系统包含滑窗操作功能,采用具有层级化设计特点的Swin Transformer模型。具体来说,在滑窗操作中包括不重叠的local window和带有一定重叠区域的cross-window机制。通过将注意力计算限制在一个窗口内的方式,一方面引入了CNN卷积操作中的局部性特征,另一方面也有效减少了计算资源的需求量。